Skip to main content
Log in

Ultracontractivity and Functional Inequalities on Infinite Graphs

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove the equivalence between some functional inequalities and the ultracontractivity property of the heat semigroup on infinite graphs. These functional inequalities include Sobolev inequalities, Nash inequalities, Faber–Krahn inequalities, and log-Sobolev inequalities. We also show that, under the assumptions of volume growth and CDE(n, 0), which is regarded as the natural notion of curvature on graphs, these four functional inequalities and the ultracontractivity property of the heat semigroup are all true on graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985) (in French)

  2. Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Li-Yau inequality on graphs. J. Differ. Geom. 99(3), 359–405 (2015)

    Article  MathSciNet  Google Scholar 

  4. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23(2), 245–287 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Coulhon, T.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141(2), 510–539 (1996)

    Article  MathSciNet  Google Scholar 

  6. Coulhon, T.: Random walks and geometry on infinite graphs. In: Ambrosio, L., Serra Cassano, F. (eds.) Lecture Notes on Analysis on Metric Spaces. Appunti dei Corsi Tenuti da Docenti della Scuola, pp. 5–30. Scuola Normale Superiore di Pisa, Pisa (2000)

  7. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  8. Davies, E.B.: Large deviations for heat kernels on graphs. J. Lond. Math. Soc. 47(1), 65–72 (1993)

    Article  MathSciNet  Google Scholar 

  9. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59(2), 335–395 (1984)

    Article  MathSciNet  Google Scholar 

  10. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–38 (1986)

    Article  MathSciNet  Google Scholar 

  11. Gong, C., Lin, Y.: Functional inequalities on graph with unbounded Laplacians. Acta Math. Sin. (Chin. Ser.) 61(3) (2018)

  12. Gong, C., Lin, Y., Liu, S., Yau, S.-T.: Li–Yau inequality for unbounded Laplacian on graphs (2018). arXiv:1801.06021v2

  13. Grigor’yan, A.: Heat kernel on a non-compact Riemannian manifold. Proc. Symp. Pure Math. 57, 239–263 (1995)

    Article  Google Scholar 

  14. Grigor’yan, A., Hu, J.: Upper bounds of heat kernels on doubling spaces. Moscow Math. J. 14(3), 505–563 (2014)

    Article  MathSciNet  Google Scholar 

  15. Horn, P., Lin, Y., Liu, S., Yau, S.-T.: Volume doubling, Poincaré inequality and Guassian heat kernel estimate for nonnegative curvature graphs. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2017-0038

  16. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Maheux, P.: New proofs of Davies–Simon’s theorems about ultracontractivity and logarithmic Sobolev inequalities related to Nash type inequalities (2006). arXiv:math/0609124v1

  18. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  19. Pang, M.M.H.: Heat kernels of graphs. J. Lond. Math. Soc. 47(1), 50–64 (1993)

    Article  MathSciNet  Google Scholar 

  20. Varopoulos, NTh: Hardy–Littlewood theory for semigroups. J. Funct. Anal. 63(2), 240–260 (1985)

    Article  MathSciNet  Google Scholar 

  21. Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370(1), 146–158 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Y.L. is supported by the National Natural Science Foundation of China (grant no. 11671401). S.L. is supported by the Certificate of China Postdoctoral Science foundation Grant (grant no. 2018M631435). The authors would like to thank the anonymous referees for their extraordinarily careful reading of the manuscript, leading to various improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Liu, S. & Song, H. Ultracontractivity and Functional Inequalities on Infinite Graphs. Discrete Comput Geom 61, 198–211 (2019). https://doi.org/10.1007/s00454-018-0014-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0014-0

Keywords

Mathematics Subject Classification

Navigation