Skip to main content
Log in

Generic Power Sum Decompositions and Bounds for the Waring Rank

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A notion of open rank, related with generic power sum decompositions of forms, has recently been introduced in the literature. The main result here is that the maximum open rank for plane quartics is eight. In particular, this gives the first example of nd, such that the maximum open rank for degree d forms that essentially depend on n variables is strictly greater than the maximum rank. On one hand, the result allows to improve the previously known bounds on open rank, but on the other hand indicates that such bounds are likely quite relaxed. Nevertheless, some of the preparatory results are of independent interest, and still may provide useful information in connection with the problem of finding the maximum rank for the set of all forms of given degree and number of variables. For instance, we get that every ternary form of degree \(d\ge 3\) can be annihilated by the product of \(d-1\) pairwise independent linear forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Sometimes the term “Waring decomposition” has been used to indicate simply a power sum decomposition, without the minimality hypothesis. We also mention that the symmetric rank is sometimes called polar rank: see [25].

  2. We say that a zero-dimensional scheme is curvilinear if it can be embedded in some smooth curve.

References

  1. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Algebr. Geom. 4(2), 201–222 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Ballico, E., Bernardi, A.: Decomposition of homogeneous polynomials with low rank. Math. Z. 271(3–4), 1141–1149 (2012). doi:10.1007/s00209-011-0907-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballico, E., Bernardi, A.: Stratification of the fourth secant variety of Veronese varieties via the symmetric rank. Adv. Pure Appl. Math. 4(2), 215–250 (2013). doi:10.1515/apam-2013-0015

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardi, A., Gimigliano, A., Idà, M.: Computing symmetric rank for symmetric tensors. J. Symb. Comput. 46(1), 34–53 (2011). doi:10.1016/j.jsc.2010.08.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Białynicki-Birula, A., Schinzel, A.: Representations of multivariate polynomials by sums of univariate polynomials in linear forms. Colloq. Math. 112(2), 201–233 (2008). doi:10.4064/cm112-2-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Białynicki-Birula, A., Schinzel, A.: Corrigendum to “Representatons of multivariate polynomials by sums of univariate polynomials in linear forms” (Colloq. Math. 112 (2008), 201–233). Colloq. Math. 125(1), 139 (2011). doi:10.4064/cm125-1-10

  7. Blekherman, G., Teitler, Z.: On maximum, typical and generic ranks. Math. Ann. 362(3–4), 1021–1031 (2015). doi:10.1007/s00208-014-1150-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Buczyńska, W., Buczyński, J.: Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes. J. Algebr. Geom. 23(1), 63–90 (2014). doi:10.1090/S1056-3911-2013-00595-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Buczyński, J., Teitler, Z.: Some examples of forms of high rank. Collect. Math. 67(3), 431–441 (2016). doi:10.1007/s13348-015-0152-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlini, E., Catalisano, M.V., Geramita, A.V.: The solution to the Waring problem for monomials and the sum of coprime monomials. J. Algebra 370, 5–14 (2012). doi:10.1016/j.jalgebra.2012.07.028

    Article  MathSciNet  MATH  Google Scholar 

  11. Comas, G., Seiguer, M.: On the rank of a binary form. Found. Comput. Math. 11(1), 65–78 (2011). doi:10.1007/s10208-010-9077-x

    Article  MathSciNet  MATH  Google Scholar 

  12. De Paris, A.: A proof that the maximum rank for ternary quartics is seven. Matematiche (Catania) 70(2), 3–18 (2015). doi:10.4418/2015.70.2.1

  13. De Paris, A.: Every ternary quintic is a sum of ten fifth powers. Int. J. Algebra Comput. 25(4), 607–631 (2015). doi:10.1142/S0218196715500125

    Article  MathSciNet  MATH  Google Scholar 

  14. De Paris, A.: The asymptotic leading term for maximum rank of ternary forms of a given degree. Linear Algebra Appl. 500, 15–29 (2016). doi:10.1016/j.laa.2016.03.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Derksen, H., Teitler, Z.: Lower bound for ranks of invariant forms. J. Pure Appl. Algebra 219(12), 5429–5441 (2015). doi:10.1016/j.jpaa.2015.05.025

    Article  MathSciNet  MATH  Google Scholar 

  16. Ellia, Ph., Peskine, Ch.: Groupes de points de \({{\mathbb{P}}}^2\): caractère et position uniforme. In: Sommese, A.J., Biancofiore, A., Livorni, E.L. (eds.) Algebraic Geometry. Lecture Notes in Mathematics, vol. 1417, pp. 111–116. Springer, Berlin (1990)

  17. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  18. Geramita, A.V.: Exposé I A: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein ideals. In: The Curves Seminar at Queen’s, vol. X. Queen’s Papers in Pure and Applied Mathematics, vol. 102, pp. 2–114. Queen’s University, Kingston (1996)

  19. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    MATH  Google Scholar 

  20. Iarrobino, A., Kanev, V.: Power Sums, Gorenstein Algebras, and Determinantal Loci. With an Appendix ‘The Gotzmann Theorems and the Hilbert Scheme’ by Anthony Larrobino and Steven L. Kleiman. Lecture Notes in Mathematics. Springer, Berlin (1999). doi:10.1007/BFb0093426

    MATH  Google Scholar 

  21. Jelisiejew, J.: An upper bound for the Waring rank of a form. Arch. Math. 102(4), 329–336 (2014). doi:10.1007/s00013-014-0632-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Kleppe, J.: Representing a Homogenous Polynomial as a Sum of Powers of Linear Forms. Thesis for the degree of Candidatum Scientiarum, University of Oslo, Oslo. http://folk.uio.no/johannkl/kleppe-master.pdf (1999). Accessed 9 Jan 2017

  23. Landsberg, J.M.: Tensors: Geometry and Applications. Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  24. Landsberg, J.M., Teitler, Z.: On the ranks and border ranks of symmetric tensors. Found. Comput. Math. 10(3), 339–366 (2010). doi:10.1007/s10208-009-9055-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Pate, T.H.: Lower bounds for polar and tensor ranks. Linear Multilinear Algebra 21(3), 277–287 (1987). doi:10.1080/03081088708817802

Download references

Acknowledgements

Some improvements are due to an anonymous referee, in particular Example 3.4 and a simplification in the proof of Lemma 4.2. Financial support by MIUR (IT), GNSAGA of INdAM (IT) and Università degli Studi di Napoli Federico II (IT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro De Paris.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballico, E., De Paris, A. Generic Power Sum Decompositions and Bounds for the Waring Rank. Discrete Comput Geom 57, 896–914 (2017). https://doi.org/10.1007/s00454-017-9886-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9886-7

Keywords

Mathematics Subject Classification

Navigation