Deterministic Leader Election Takes \(\Theta (D + \log n)\) Bit Rounds


Leader election is, together with consensus, one of the most central problems in distributed computing. This paper presents a distributed algorithm, called \(\mathcal{STT}\) , for electing deterministically a leader in an arbitrary network, assuming processors have unique identifiers of size \(O(\log n)\), where n is the number of processors. It elects a leader in \(O(D +\log n)\) rounds, where D is the diameter of the network, with messages of size O(1). Thus it has a bit round complexity of \(O(D +\log n)\). This substantially improves upon the best known algorithm whose bit round complexity is \(O(D\log n)\). In fact, using the lower bound by Kutten et al. (J ACM 62(1):7:1–7:27, 2015) and Kutten et al. (Theor Comput Sci 561:134–143, 2015) and a result of Dinitz and Solomon (Theor Comput Sci 384(2–3):168–183, 2007), we show that the bit round complexity of \(\mathcal{STT}\) is optimal (up to a constant factor), which is a significant step forward in understanding the interplay between time and message optimality for the election problem. Our algorithm requires no knowledge on the graph such as n or D, and the pipelining technique we introduce to break the \(O(D\log n)\) barrier is general.

This is a preview of subscription content, log in to check access.


  1. 1.

    Afek, Y., Matias, Y.: Elections in anonymous networks. Inf. Comput. 113(2), 312–330 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Symposium on Theory of Computing, pp. 82–93 (1980)

  3. 3.

    Attiya, H., Snir, M., Warmuth, M.K.: Computing on an anonymous ring. J. ACM 35(4), 845–875 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. Wiley, Hoboken (2004)

    Google Scholar 

  5. 5.

    Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems (detailed summary). In: Proc. of 19th Symp. on Theory of Computing, 1987, New York, USA, pp. 230–240 (1987)

  6. 6.

    Bar-Noy, A., Naor, J., Naor, M.: One-bit algorithms. Distrib. Comput. 4, 3–8 (1990)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Bodlaender, H.L., Moran, S., Warmuth, M.K.: The distributed bit complexity of the ring: from the anonymous case to the non-anonymous case. Inf. comput. 114(2), 34–50 (1994)

    MATH  Article  Google Scholar 

  8. 8.

    Bodlaender, H.L., Tel, G.: Bit-optimal election in synchronous rings. Inf. Process. Lett. 36(1), 53–56 (1990)

    MATH  Article  Google Scholar 

  9. 9.

    Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.: Symmetry breaking in anonymous networks: characterizations. In: Proc. 4th Israeli Symposium on Theory of Computing and Systems, pp. 16–26. IEEE Press (1996)

  10. 10.

    Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Burns, J.E.: A Formal Model for Message Passing Systems. Computer Science Department, Indiana University, Bloomington (1980)

    Google Scholar 

  12. 12.

    Casteigts, A., Métivier, Y., Robson, J.M., Zemmari, A.: Deterministic leader election in \(O(D + \log n)\) time with messages of size \(O(1)\). In: 30th Int. Symp. on Distributed Computing (DISC) (2016)

  13. 13.

    Chalopin, J.: Local computations on closed unlabelled edges: the election problem and the naming problem (extended abstract). In: Proc. of 31 st Conference on Current Trends in Theory and Practice of Informatics, SOFSEM’04, number 3381 in LNCS, pp. 81–90 (2005)

  14. 14.

    Chalopin, J., Godard, E., Métivier, Y.: Election in partially anonymous networks with arbitrary knowledge in message passing systems. Distrib. Comput. 25(4), 297–311 (2012)

    MATH  Article  Google Scholar 

  15. 15.

    Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based on Mazurkiewicz’s algorithm. Fundam. Inform. 80(1–3), 221–246 (2007)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Chalopin, J., Métivier, Y.: On the power of synchronization between two adjacent processes. Distrib. Comput. 23, 177–196 (2010)

    MATH  Article  Google Scholar 

  17. 17.

    Dieudonné, Y., Pelc, A.: Impact of knowledge on election time in anonymous networks. arXiv preprint arXiv:1604.05023 (2016)

  18. 18.

    Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving symmetry in chains and rings. J. ACM (2008).

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Dinitz, Y., Solomon, N.: Two absolute bounds for distributed bit complexity. Theor. Comput. Sci. 384(2–3), 168–183 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Förster, K.-T., Seidel, J., Wattenhofer, R.: Deterministic leader election in multi-hop beeping networks (extended abstract). In: Distributed Computing—28th International Symposium, DISC 2014, Austin, TX, USA, October 12–15, 2014. Proceedings, pp. 212–226 (2014)

  21. 21.

    Fusco, E.G., Pelc, A.: Knowledge, level of symmetry, and time of leader election. Distrib. Comput. 28(4), 221–232 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Gallager, R.G.: Finding a leader in a network with \(o(e + n\log n)\) messages. Technical Report Internal Memo., M.I.T., Cambridge, MA (1979)

  23. 23.

    Gallager, R.G., Humblet, P.A., Spira, PhM: A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

    MATH  Article  Google Scholar 

  24. 24.

    Gilbert, S., Robinson, P., Sourav, S.: Leader election in well-connected graphs. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pp. 227–236. ACM (2018)

  25. 25.

    Glacet, C., Miller, A., Pelc, A.: Time versus information tradeoffs for leader election in anonymous trees. ACM Trans Algorithms (TALG) 13(3), 31 (2017)

    MATH  Google Scholar 

  26. 26.

    Godard, E., Métivier, Y., Muscholl, A.: Characterization of classes of graphs recognizable by local computations. Theory Comput. Syst. 37, 249–293 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput. 88(1), 60–87 (1990)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Korach, E., Kutten, S., Moran, S.: A modular technique for the design of efficient distributed leader finding algorithms. ACM Trans. Program. Lang. Syst. 12(1), 84–101 (1990)

    Article  Google Scholar 

  29. 29.

    Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring in \({O}(\sqrt{\log n})\) bit rounds. In: 20th Int. Parallel and Distributed Processing Symposium (IPDPS), Rhodes Island, Greece. IEEE (2006)

  30. 30.

    Krzywdziński, K., Kowalski, D.: On the complexity of distributed bfs in ad hoc networks with non-spontaneous wake-ups. Discrete Math. Theor. Comput. Sci. 15, 101–118 (2013)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  32. 32.

    Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: On the complexity of universal leader election. J. ACM 62(1), 7:1–7:27 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: Sublinear bounds for randomized leader election. Theor. Comput. Sci. 561, 134–143 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Lavault, C.: Evaluation des Algorithmes Distribués. Hermès, Paris (1995)

    Google Scholar 

  35. 35.

    LeLann, G.: Distributed systems: towards a formal approach. In: Gilchrist, B. (ed.) Information Processing ’77, pp. 155–160. North-Holland (1977)

  36. 36.

    Lynch, N.A.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)

    Google Scholar 

  37. 37.

    Mazurkiewicz, A.: Distributed enumeration. Inf. Process. Lett. 61(5), 233–239 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Métivier, Y., Robson, J.M., Zemmari, A.: Analysis of fully distributed splitting and naming probabilistic procedures and applications. Theor. Comput. Sci. 584, 115–130 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Miller, A., Pelc, A.: Election versus selection: How much advice is needed to find the largest node in a graph? In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 377–386. ACM (2016)

  40. 40.

    Peleg, D.: Time-optimal leader election in general networks. J. Parallel Distrib. Comput. 8(1), 96–99 (1990)

    Article  Google Scholar 

  41. 41.

    Rosen, K.H. (ed.): Handbook of Discrete and Combinatorial Mathematics. CRC Press, Boca Raton (2000)

    Google Scholar 

  42. 42.

    Santoro, N.: On the message complexity of distributed problems. Int. J. Parallel Program. 13(3), 131–147 (1984)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Santoro, N.: Design and Analysis of Distributed Algorithm. Wiley, Hoboken (2007)

    Google Scholar 

  44. 44.

    Schieber, B., Snir, M.: Calling names on nameless networks. Inf. Comput. 113(1), 80–101 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Schneider, J., Wattenhofer, R.: Trading bit, message, and time complexity of distributed algorithms. In: Distributed Computing—25th International Symposium, DISC 2011, Rome, Italy, September 20–22, 2011. Proceedings, pp. 51–65 (2011)

  46. 46.

    Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–34 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Tanenbaum, A., van Steen, M.: Distributed Systems—Principles and Paradigms. Prentice Hall (2002)

  48. 48.

    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  49. 49.

    Yamashita, M., Kameda, T.: Computing on an anonymous network. In: PODC, pp. 117–130 (1988)

  50. 50.

    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i—characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

    Article  Google Scholar 

  51. 51.

    Yao, A.C.: Some complexity questions related to distributed computing. In: Proc. of 11th Symp. on Theory of computing (STOC), pp. 209–213. ACM Press (1979)

Download references


We thank the anonymous referees for their many helpful comments on an earlier version of this article.

Author information



Corresponding author

Correspondence to A. Casteigts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially supported by ANR projects DESCARTES and ESTATE (resp. ANR-16-CE40-0023 and ANR-16-CE25-0009-03). A preliminary subset of this work appeared in the proceedings of DISC 2016 [12].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casteigts, A., Métivier, Y., Robson, J.M. et al. Deterministic Leader Election Takes \(\Theta (D + \log n)\) Bit Rounds. Algorithmica 81, 1901–1920 (2019).

Download citation


  • Leader Election Problem
  • Round Complexity
  • High Identifiers
  • Spanning Tree
  • Deterministic Election