Skip to main content
Log in

Scaffolding Problems Revisited: Complexity, Approximation and Fixed Parameter Tractable Algorithms, and Some Special Cases

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper is devoted to new results about the scaffolding problem, an integral problem of genome inference in bioinformatics. The problem consists in finding a collection of disjoint cycles and paths covering a particular graph called the “scaffold graph”. We examine the difficulty and the approximability of the scaffolding problem in special classes of graphs, either close to trees, or very dense. We propose negative and positive results, exploring the frontier between difficulty and tractability of computing and/or approximating a solution to the problem. Also, we explore a new direction through related problems consisting in finding a family of edges having a strong effect on solution weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The ETH states that there is a constant \(c >1\) such that n-variable 3SAT cannot be solved in \(O(c^n)\) time.

References

  1. Alimonti, P., Ausiello, G., Giovaniello, L., Protasi, M.: On the complexity of approximating weighted satisfiability problems. Tech. rep., Università degli Studi di Roma La Sapienza, rapporto Tecnico RAP 38.97 (1997)

  2. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. J. Comb. Optim. 26(1), 178–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bazgan, C., Bentz, C., Picouleau, C., Ries, B.: Blockers for the stability number and the chromatic number. Graphs Comb. 31(1), 73–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazgan, C., Nichterlein, A., Niedermeier, R.: A refined complexity analysis of finding the most vital edges for undirected shortest paths. In: Paschos, V.T., Widmayer, P. (eds.) Algorithms and Complexity—9th International Conference, CIAC 2015, Paris, France, May 20–22, 2015. Proceedings, Lecture Notes in Computer Science, vol. 9079, pp. 47–60. Springer, Berlin (2015)

    Google Scholar 

  5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L.: Treewidth of graphs. In: Ming-Yang, K. (ed.) Encyclopedia of Algorithms, pp. 2255–2257. Springer, New York (2016)

  7. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandstädt, A.: Partitions of graphs into one or two independent sets and cliques. Discrete Math. 152(1–3), 47–54 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chateau, A., Giroudeau, R.: Complexity and polynomial-time approximation algorithms around the scaffolding problem. In: Proceedings of AlCoB ’14, LNCS, vol. 8542, pp. 47–58. Springer, Berlin (2014)

  10. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the maximization scaffolding problem. Theoret. Comput. Sci. 595, 92–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceedings of the Twelfth Annual IEEE Conference on Computational Complexity, Ulm, Germany, June 24–27, 1997, pp. 262–273 (1997)

  13. Dayarian, A., Michael, T., Sengupta, A.: SOPRA: Scaffolding algorithm for paired reads via statistical optimization. BMC Bioinform. 11, 345 (2010)

    Article  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  15. Gao, S., Sung, W.K., Nagarajan, N.: Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18(11), 1681–1691 (2011)

    Article  MathSciNet  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  17. Håstad, J.: Clique is hard to approximate within \(n^{1-\varepsilon }\). Electronic Colloquium on Computational Complexity (ECCC) 4(38) (1997)

  18. Hunt, M., Newbold, C., Berriman, M., Otto, T.: A comprehensive evaluation of assembly scaffolding tools. Genome Biol. 15(3), R42 (2014)

    Article  Google Scholar 

  19. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinform. 16(Suppl 14), S2 (2015)

    Article  Google Scholar 

  24. Weller, M., Chateau, A., Giroudeau, R.: On the complexity of scaffolding problems: from cliques to sparse graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D. (eds.) Combinatorial Optimization and Applications—9th International Conference, COCOA 2015, Houston, TX, USA, December 18–20, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9486, pp. 409–423. Springer, Berlin (2015)

    Google Scholar 

  25. Woeginger, G.: Exact algorithms for np-hard problems: a survey. In: Combinatorial Optimization—Eureka, You Shrink!, Lecture Notes in Computer Science, vol. 2570, pp. 185–207. Springer, Berlin (2003)

Download references

Acknowledgements

This work was supported by the Institut de Biologie Computationnelle (http://www.ibc-montpellier.fr/) (ANR Projet Investissements d’Avenir en bioinformatique IBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Chateau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, M., Chateau, A., Dallard, C. et al. Scaffolding Problems Revisited: Complexity, Approximation and Fixed Parameter Tractable Algorithms, and Some Special Cases. Algorithmica 80, 1771–1803 (2018). https://doi.org/10.1007/s00453-018-0405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0405-x

Keywords

Navigation