Skip to main content
Log in

Universal Slope Sets for 1-Bend Planar Drawings

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We prove that every set of \(\varDelta -1\) slopes is 1-bend universal for the planar graphs with maximum vertex degree \(\varDelta \). This means that any planar graph with maximum degree \(\varDelta \) admits a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges can be chosen in any given set of \(\varDelta -1\) slopes. Our result improves over previous literature in three ways: Firstly, it improves the known upper bound of \(\frac{3}{2} (\varDelta -1)\) on the 1-bend planar slope number; secondly, the previously known algorithms compute 1-bend planar drawings by using sets of \(O(\varDelta )\) slopes that may vary depending on the input graph; thirdly, while these algorithms typically minimize the slopes at the expenses of constructing drawings with poor angular resolution, we can compute drawings whose angular resolution is at least \(\frac{\pi }{\varDelta -1}\), which is worst-case optimal up to a factor of \(\frac{3}{4}\). Our proofs are constructive and give rise to a linear-time drawing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Note that, formally, for a straight line \(\ell \), the angle that a horizontal line needs to be rotated counter-clockwise in order to make it overlap with \(\ell \) is the angle of incline of \(\ell \), while its slopes is the tangent of this angle. However, for simplicity reasons, and similarly as in previous papers (see, e.g., [16, 19, 20]), we refer directly to the angle of incline of \(\ell \) as its slope.

References

  1. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electron. J. Comb. 13(1), 3 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar octilinear drawings. J. Graph Algorithms Appl. 21(4), 709–730 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68(4), 859–885 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. Comput. Geom. 55, 26–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. J. Graph Algorithms Appl. 8, 89–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonichon, N., Saëc, B. L., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Kucera, L. (ed.) WG, vol. 2573 of LNCS, pp. 35–46. Springer, Berlin (2002)

  10. Czyzowicz, J.: Lattice diagrams with few slopes. J. Comb. Theory Ser. A 56(1), 96–108 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czyzowicz, J., Pelc, A., Rival, I.: Drawing orders with few slopes. Discrete Math. 82(3), 233–250 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Czyzowicz, J., Pelc, A., Rival, I., Urrutia, J.: Crooked diagrams with few slopes. Order 7(2), 133–143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab. Comput. 3, 233–246 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  16. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with few slopes. J. Graph Algorithms Appl. 19(2), 707–741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-bend upward planar drawings of SP-digraphs. In: Hu, Y., Nöllenburg, M. (eds.), Graph Drawing, vol. 9801 of LNCS, pp. 123–130. Springer, Berlin (2016)

  18. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs with four slopes and optimal angular resolution. Theor. Comput. Sci. 714, 51–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38(3), 181–193 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. Discrete Comput. Geom. 49(2), 157–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duncan, C.A., Kobourov, S.G.: Polar coordinate drawing of planar graphs with good angular resolution. J. Graph Algorithms Appl. 7(4), 311–333 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Durocher, S., Mondal, D.: On balanced +-contact representations. In: Graph Drawing, vol. 8242 of LNCS, pp. 143–154. Springer, Berlin (2013)

  24. Durocher, S., Mondal, D.: Trade-offs in planar polyline drawings. In: Duncan, C.A., Symvonis, A. (eds.) Graph Drawing, vol. 8871 of LNCS, pp. 306–318. Springer, Berlin (2014)

  25. Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in the general position model. Comput. Geom. 47(3), 460–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T., Symvonis, A., Welzl, E., Woeginger, G.J.: Drawing graphs in the plane with high resolution. SIAM J. Comput. 22(5), 1035–1052 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds (extended abstract). In: van Leeuwen, J. (ed.) ESA, vol. 855 of LNCS, pp. 12–23. Springer, Berlin (1994)

  28. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gronemann, M.: Bitonic \(st\)-orderings of biconnected planar graphs. In: Graph Drawing, vol. 8871 of LNCS, pp. 162–173. Springer, Berlin (2014)

  30. Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Graph Drawing, vol. 1547 of LNCS, pp. 167–182. Springer, Berlin (1998)

  31. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed), Graph Drawing, vol. 1984 of LNCS, pp. 77–90. Springer, Berlin (2000)

  32. Hoffmann, U.: On the complexity of the planar slope number problem. J. Graph Algorithms Appl. 21(2), 183–193 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar slope number of planar partial 3-trees of bounded degree. Graphs Comb. 29(4), 981–1005 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Springer, Berlin (2004)

  35. Kant, G.: Drawing planar graphs using the lmc-ordering (extended abstract). In: FOCS, pp. 101–110. IEEE Computer Society (1992)

  36. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG, vol. 657 of LNCS, pp. 263–276. Springer, Berlin (1992)

  37. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. Inf. Comput. 135(1), 1–14 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Knauer, K., Walczak, B.: Graph drawings with one bend and few slopes. In: Kranakis, E., Navarro, G., Chávez, E. (eds.), LATIN, vol. 9644 of LNCS, pp. 549–561. Springer, Berlin (2016)

  41. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Comput. Geom. 47(5), 614–624 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In: Wismath, S.K., Wolff, A. (eds.) Graph Drawing, vol. 8242 of LNCS, pp. 412–423. Springer, Berlin (2013)

  43. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998)

    MathSciNet  MATH  Google Scholar 

  44. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Kreveld, M.J., Speckmann, B. (eds.) Graph Drawing, vol. 7034 of LNCS, pp. 254–265. Springer, Berlin (2011)

  45. Nöllenburg, M.: Automated drawings of metro maps. Technical Report 2005-25, Fakultät für Informatik, Universität Karlsruhe (2005)

  46. Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626–641 (2011)

    Article  Google Scholar 

  47. Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph. 17(1), 101–114 (2011)

    Article  Google Scholar 

  48. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization. CRC Press, Amsterdam (2013)

  50. Wade, G.A., Chu, J.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work started at the 19th Korean Workshop on Computational Geometry. We wish to thank the organizers and the participants for creating a pleasant and stimulating atmosphere and in particular Fabian Lipp and Boris Klemz for useful discussions. We also gratefully thank the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Montecchiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this paper has been presented at the 33rd International Symposium on Computational Geometry (SoCG 2017). Research supported in part by the project: “Algoritmi e sistemi di analisi visuale di reti complesse e di grandi dimensioni” - Ricerca di Base 2018, Dipartimento di Ingegneria dell’Università degli Studi di Perugia, and by the DFG Grants Ka812/17-1 and Ka812/18-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelini, P., Bekos, M.A., Liotta, G. et al. Universal Slope Sets for 1-Bend Planar Drawings. Algorithmica 81, 2527–2556 (2019). https://doi.org/10.1007/s00453-018-00542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-00542-9

Keywords

Navigation