Skip to main content
Log in

Computing \(L_1\) Shortest Paths Among Polygonal Obstacles in the Plane

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, suppose a triangulation of the space outside the obstacles is given; we present an \(O(n+h\log h)\) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of an \(L_1\) shortest obstacle-avoiding path from s to t can be computed in \(O(\log n)\) time and the actual path can be reported in additional time proportional to the number of edges of the path. The previously best algorithm computes such a shortest path map in \(O(n\log n)\) time and O(n) space. So our algorithm is faster when h is relatively small. Further, our techniques can be extended to obtain improved results for other related problems, e.g., computing the \(L_1\) geodesic Voronoi diagram for a set of point sites among the obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. For example, since the Euclidean shortest path between any two points in a simple polygon is also an \(L_1\) shortest path [17], a Euclidean SPM in a simple polygon is also an \(L_1\) one. Thus, we can use a corresponding shortest path algorithm for the Euclidean case (e.g., [16]) to compute an \(L_1\) SPM in \(bay({\overline{cd}})\) with respect to r in linear time.

  2. This was pointed out by an anonymous reviewer. Indeed, if \(m\le \sqrt{n}\), then \(m\log (n+m)=O(n)\); otherwise, \(m\log (n+m)=O(m\log m)\).

References

  1. Atallah, M.J., Chen, D.Z., Wagener, H.: An optimal parallel algorithm for the visibility of a simple polygon from a point. J. ACM 38(3), 516–533 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chazelle, B., Edelsbrunner, H., Grigni, M., Gribas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B., Guibas, L.: Visibility and intersection problems in plane geometry. Discrete Comput. Geom. 4, 551–589 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D.Z., Hershberger, J., Wang, H.: Computing shortest paths amid convex pseudodisks. SIAM J. Comput. 42(3), 1158–1184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, D.Z., Inkulu, R., Wang, H.: Two-point \(L_1\) shortest path queries in the plane. J. Comput. Geom. 1, 473–519 (2016)

    MATH  Google Scholar 

  8. Chen, D.Z., Klenk, K.S., Tu, H.-Y.T.: Shortest path queries among weighted obstacles in the rectilinear plane. SIAM J. Comput. 29(4), 1223–1246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal domain. In: Proceedings of the 39th International Colloquium on Automata, Languages and Programming, pp. 218–229 (2012)

  10. Chen, D.Z., Wang, H.: Computing shortest paths among curved obstacles in the plane. ACM Trans. Algorithms, 11, Article No. 26 (2015)

  11. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in \(O(n \log ^2 n)\) time. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp. 251–257 (1987)

  12. Clarkson, K., Kapoor, S., Vaidya, P.: Rectilinear shortest paths through polygonal obstacles in \(O(n \log ^{2/3} n)\) time. Manuscript (1988)

  13. de Rezende, P.J., Lee, D.T., Wu, Y.F.: Rectilinear shortest paths in the presence of rectangular barriers. Discrete Comput. Geom. 4, 41–53 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. 4(2), 63–97 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18(3), 403–431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple polygons. Inf. Control 64, 52–76 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corridors. Comput. Geom. 42(9), 873–884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Inkulu, R., Kapoor, S., Maheshwari, S.N.: A near optimal algorithm for finding Euclidean shortest path in polygonal domain. arXiv:1011.6481v1 (2010)

  23. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT 27, 458–473 (1987)

    Article  MATH  Google Scholar 

  24. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles. In: Proceedings of the 4th Annual ACM Symposium on Computational Geometry, pp. 172–182 (1988)

  25. Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Larson, R.C., Li, V.O.K.: Finding minimum rectilinear distance paths in the presence of barriers. Networks 11, 285–304 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22(2), 207–221 (1983)

    Article  MATH  Google Scholar 

  29. Mitchell, J.S.B.: An optimal algorithm for shortest rectilinear paths among obstacles. In: Abstracts of the 1st Canadian Conference on Computational Geometry (1989)

  30. Mitchell, J.S.B.: \(L_1\) shortest paths among polygonal obstacles in the plane. Algorithmica 8(1), 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6(3), 309–332 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oh, E., Ahn, H.-K.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. In: Proceedings of the 33rd International Symposium on Computational Geometry, pp. 52:1–52:15 (2017)

  33. Papadopoulou, E., Lee, D.T.: A new approach for the geodesic Voronoi diagram of points in a simple polygon and other restricted polygonal domains. Algorithmica 20, 319–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Inf. Process. Lett. 23(2), 71–76 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th Annual Symposium on Foundations of Computer Science, pp. 151–162 (1975)

  36. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J. ACM 41(5), 982–1012 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Widmayer, P.: On graphs preserving rectilinear shortest paths in the presence of obstacles. Ann. Oper. Res. 33(7), 557–575 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Widmayer, P., Wu, Y.F., Wong, C.K.: On some distance problems in fixed orientations. SIAM J. Comput. 16(4), 728–746 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous reviewer for numerous suggestions that significantly improve the presentation of the paper. D.Z. Chen was supported in part by NSF under Grants CCF-0916606, CCF-1217906, and CCF-1617735. H. Wang was supported in part by NSF under Grant CCF-1317143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preliminary results of this paper appeared in the Proceedings of the 19th European Symposium on Algorithms (ESA 2011) and the Proceedings of the 30th Symposium on Theoretical Aspects of Computer Science (STACS 2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D.Z., Wang, H. Computing \(L_1\) Shortest Paths Among Polygonal Obstacles in the Plane. Algorithmica 81, 2430–2483 (2019). https://doi.org/10.1007/s00453-018-00540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-00540-x

Keywords

Navigation