, Volume 80, Issue 6, pp 1804–1833 | Cite as

Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm

  • Gennaro Cordasco
  • Luisa Gargano
  • Marco Mecchia
  • Adele A. Rescigno
  • Ugo Vaccaro


Given a network represented by a graph \(G=(V,E)\), we consider a dynamical process of influence diffusion in G that evolves as follows: Initially only the nodes of a given \(S\subseteq V\) are influenced; subsequently, at each round, the set of influenced nodes is augmented by all the nodes in the network that have a sufficiently large number of already influenced neighbors. The question is to determine a small subset of nodes S (a target set) that can influence the whole network. This is a widely studied problem that abstracts many phenomena in the social, economic, biological, and physical sciences. It is known that the above optimization problem is hard to approximate within a factor of \(2^{\log ^{1-\epsilon }|V|}\), for any \(\epsilon >0\). In this paper, we present a fast and surprisingly simple algorithm that exhibits the following features: (1) when applied to trees, cycles, or complete graphs, it always produces an optimal solution (i.e, a minimum size target set); (2) when applied to arbitrary networks, it always produces a solution of cardinality which improves on previously known upper bounds; (3) when applied to real-life networks, it always produces solutions that substantially outperform the ones obtained by previously published algorithms (for which no proof of optimality or performance guarantee is known in any class of graphs).


Social networks Information diffusions Algorithms 



We are grateful to the reviewers for their careful reading of the paper and for their helpful comments.


  1. 1.
    Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. J. Discrete Algorithms 27, 54–65 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C., Settle, J.E., Fowler, J.H.: A 61-million-person experiment in social influence and political mobilization. Nature 489, 295–298 (2012)CrossRefGoogle Scholar
  5. 5.
    Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.: Irreversible conversion of graphs. Theor. Comput. Sci. 412(29), 3693–3700 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, W., Lakshmanan, L.V., Castillo, C.: Information and Influence Propagation in Social Networks. Morgan & Claypool, San Rafael (2013)Google Scholar
  8. 8.
    Chiang, C.-Y., Huang, L.-H., Li, B.-J., Jiaojiao, W., Yeh, H.-G.: Some results on the target set selection problem. J. Comb. Optim. 25(4), 702–715 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chiang, C.-Y., Huang, L.-H., Yeh, H.-G.: Target set selection problem for honeycomb networks. SIAM J. Discrete Math. 27(1), 310–328 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Christakis, N.A., Fowler, J.H.: Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives—How Your Friends’ Friends’ Friends Affect Everything You Feel, Think, and Do. Back Bay Books (reprint edition) (2011)Google Scholar
  12. 12.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Peters, J., Vaccaro, U.: Spread of influence in weighted networks under time and budget constraints. Theor. Comput. Sci. 586, 40–58 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Coja-Oghlan, A., Feige, U., Krivelevich, M., Reichman, D.: Contagious sets in expanders. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1953–1987 (2015)Google Scholar
  15. 15.
    Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and effective heuristic for discovering small target sets in social networks. In: Proceedings of International Conference on Combinatorial Optimization and Applications, COCOA 2015, vol. 9486, pp. 193–208 (2015)Google Scholar
  16. 16.
    Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Optimizing spread of influence in social networks via partial incentives. In: Structural Information and Communication Complexity: 22nd International Colloquium, SIROCCO 2015, pp. 119–134 (2015)Google Scholar
  17. 17.
    Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Brief announcement: active information spread in networks. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC, vol. 16, pp. 435–437 (2016)Google Scholar
  18. 18.
    Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social networks. In: Proceedings of Combinatorial Algorithms—27th International Workshop, IWOCA 2016, pp. 96–108 (2016)Google Scholar
  19. 19.
    Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence large networks. Soc. Netw. Anal. Min. SNAM 6(94), 2016 (2016)Google Scholar
  20. 20.
    Dinh, T.N., Zhang, H., Nguyen, D.T., Thai, M.T.: Cost-effective viral marketing for time-critical campaigns in large-scale social networks. IEEE/ACM Trans. Netw. 22(6), 2001–2011 (2014)CrossRefGoogle Scholar
  21. 21.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’01, pp. 57–66 (2001)Google Scholar
  22. 22.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Fan, L., Weili, W., Zhai, X., Xing, K., Lee, W., Ding-Zhu, D.: Maximizing rumor containment in social networks with constrained time. Soc. Netw. Anal. Min. 4(1), 214 (2014)CrossRefGoogle Scholar
  24. 24.
    Gargano, L., Hell, P., Peters, J.G., Vaccaro, U.: Influence diffusion in social networks under time window constraints. Theor. Comput. Sci. 584(C), 53–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  26. 26.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 137–146, New York, NY, USA (2003)Google Scholar
  27. 27.
    Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Proceedings of the 32nd International Conference on Automata, Languages and Programming, ICALP’05, pp. 1127–1138, Berlin, Heidelberg (2005)Google Scholar
  28. 28.
    Lately, D.: An Army of Eyeballs: The Rise of the Advertisee. The Baffler, Chicago (2014)Google Scholar
  29. 29.
    Leppaniemi, M., Karjaluoto, H., Lehto, H., Goman, A.: Targeting young voters in a political campaign: empirical insights into an interactive digital marketing campaign in the 2007 finnish general election. J. Nonprofit Public Sect. Market. 22(1), 14–37 (2010)CrossRefGoogle Scholar
  30. 30.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection (2015).
  31. 31.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web 1(1), 5 (2007)CrossRefGoogle Scholar
  32. 32.
    Lu, Z., Wu, W.: Influence maximization. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms. Springer, Berlin (2014)Google Scholar
  33. 33.
    Mark, E.J.: Newman modularity and community structure in networks. Proc. Natl. Acad. Sci. USA (PNAS) 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  34. 34.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)CrossRefzbMATHGoogle Scholar
  35. 35.
    Reddy, T.T., Pandu Rangan, C.: Variants of spreading messages. J. Gr. Algorithms Appl. 15(5), 683–699 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shakarian, P., Eyre, S., Paulo, D.: A scalable heuristic for viral marketing under the tipping model. Soc. Netw. Anal. Min. 3(4), 1225–1248 (2013)CrossRefGoogle Scholar
  37. 37.
    Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P. (eds.): Dynamics of Information Systems: Mathematical Foundations. Springer, Berlin (2012)zbMATHGoogle Scholar
  38. 38.
    Tumulty, K.: Obama’s Viral Marketing Campaign. TIME Magazine, New York (2007)Google Scholar
  39. 39.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  40. 40.
    Zafarani, R., Liu, H.: Social computing data repository at ASU (2009).
  41. 41.
    Zaker, M.: On dynamic monopolies of graphs with general thresholds. Discrete Math. 312(6), 1136–1143 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, H., Mishra, S., Thai, M.T.: Recent advances in information diffusion and influence maximization in complex social networks. In: Wu, J., Wang, Y. (eds.) Opportunistic Mobile Social Networks. CRC Press, Boca Raton (2014)Google Scholar
  43. 43.
    Zhu, Y., Weili, W., Bi, Y., Lidong, W., Jiang, Y., Wen, X.: Better approximation algorithms for influence maximization in online social networks. J. Comb. Optim. 30(1), 97–108 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversità degli Studi della Campania “Luigi Vanvitelli”CasertaItaly
  2. 2.Department of Computer ScienceUniversity of SalernoFiscianoItaly

Personalised recommendations