Skip to main content
Log in

Spanning Trees in Multipartite Geometric Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Let R and B be two disjoint sets of points in the plane where the points of R are colored red and the points of B are colored blue, and let \(n=|R\cup B|\). A bichromatic spanning tree is a spanning tree in the complete bipartite geometric graph with bipartition (RB). The minimum (respectively maximum) bichromatic spanning tree problem is the problem of computing a bichromatic spanning tree of minimum (respectively maximum) total edge length. (1) We present a simple algorithm that solves the minimum bichromatic spanning tree problem in \(O(n\log ^3 n)\) time. This algorithm can easily be extended to solve the maximum bichromatic spanning tree problem within the same time bound. It also can easily be generalized to multicolored point sets. (2) We present \(\Theta (n\log n)\)-time algorithms that solve the minimum and the maximum bichromatic spanning tree problems. (3) We extend the bichromatic spanning tree algorithms and solve the multicolored version of these problems in \(O(n\log n\log k)\) time, where k is the number of different colors (or the size of the multipartition in a complete multipartite geometric graph).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aggarwal, A., Edelsbrunner, H., Raghavan, P., Tiwari, P.: Optimal time bounds for some proximity problems in the plane. Inf. Process. Lett. 42(1), 55–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4, 591–604 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avis, D.: Lower bounds for geometric problems. In: 18th Allerton Conference, Urbana, IL, pp. 35–40 (1980)

  4. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a Delaunay triangulation in linear time. Algorithmica 34(1), 39–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and monotone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Edelsbrunner, H.: Computing the extreme distances between two convex polygons. J. Algorithms 6(2), 213–224 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P., Sharir, M.: Dynamic planar Voronoi diagrams for general distance functions and their algorithmic applications. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (\(SODA\)), pp. 2495–2504 (2017)

  8. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: 20th Annual Symposium on Foundations of Computer Science, pp. 18–27 (1979)

  9. Löffler, M., Mulzer, W.: Triangulating the square and squaring the triangle: quadtrees and Delaunay triangulations are equivalent. SIAM J. Comput. 41(4), 941–974 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Monma, C.L., Paterson, M., Suri, S., Yao, F.F.: Computing Euclidean maximum spanning trees. Algorithmica 5(3), 407–419 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Preparata, F.P., Shamos, M.I.: Computational Geometry—An Introduction. Texts and Monographs in Computer Science. Springer, Berlin (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Biniaz.

Additional information

A. Biniaz, P. Bose, A. Maheshwari, P. Morin, M.Smid supported by NSERC. D. Eppstein supported by NSF Grant CCF-1228639.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biniaz, A., Bose, P., Eppstein, D. et al. Spanning Trees in Multipartite Geometric Graphs. Algorithmica 80, 3177–3191 (2018). https://doi.org/10.1007/s00453-017-0375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0375-4

Keywords

Navigation