, Volume 80, Issue 6, pp 1964–1982 | Cite as

Trees, Paths, Stars, Caterpillars and Spiders

  • Minghui Jiang


For any \(k \ge 2\), deciding whether the linear arboricity, star arboricity, caterpillar arboricity, spider arboricity, track number, unit track number, and subchromatic index, respectively, of a bipartite graph are at most k are all NP-complete.


Graph decomposition Arboricity Interval number Subcoloring NP-hardness 


  1. 1.
    Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: cyclic and acyclic invariants. Math. Slovoca 30, 405–417 (1980)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic number of a graph. Discret. Math. 74, 33–49 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N.: The linear arboricity of graphs. Isr. J. Math. 62, 311–325 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alon, N., Teague, V.J., Wormald, N.C.: Linear arboricity and linear \(k\)-arboricity of regular graphs. Graphs Comb. 17, 11–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cai, L., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs. Discret. Appl. Math. 30, 15–27 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cameron, P.J.: Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  7. 7.
    Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \(O(E\log D)\) time. Combinatorica 21, 5–12 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cygan, M., Hou, J., Kowalik, Ł., Lužar, B., Wu, J.: A planar linear arboricity conjecture. J. Graph Theory 69, 403–425 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and the hardness of colouring graphs of large girth. Comb. Probab. Comput. 7, 375–386 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard. Electron. J. Comb. 11, R46 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: complexity and algorithms. SIAM J. Discret. Math. 16, 635–650 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fiala, J., Le, V.B.: The subchromatic index of graphs. Tatra Mt. Math. Publ. 36, 129–146 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7, 465–497 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gimbel, J., Hartman, C.: Subcolorings and the subchromatic number of a graph. Discret. Math. 272, 139–154 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gonçalves, D.: Caterpillar arboricity of planar graphs. Discret. Math. 307, 2112–2121 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gonçalves, D., Ochem, P.: On star and caterpillar arboricity. Discret. Math. 309, 3694–3702 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hakimi, S.L., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discret. Math. 149, 93–98 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 718–720 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jiang, M.: Recognizing \(d\)-interval graphs and \(d\)-track interval graphs. Algorithmica 66, 541–563 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal of Algorithms 19, 104–115 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular graphs. J. Algorithms 4, 35–44 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lovász, L.: Coverings and colorings of hypergraphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 3–12. Utilitas Mathematica Publishing, Winnipeg (1973)Google Scholar
  23. 23.
    Maffray, F., Preissmann, M.: On the NP-completeness of the \(k\)-colorability problem for triangle-free graphs. Discret. Math. 162, 313–317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nash-Williams, C.StJ A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39, 12 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Peroche, B.: Complexité de l’arboricité linéaire d’un graphe. RAIRO Recherche Operationelle 16, 125–129 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Shermer, T.C.: On rectangle visibility graphs III: external visibility and complexity. In: Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG’96), pp. 234–239 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUtah State UniversityLoganUSA

Personalised recommendations