Skip to main content
Log in

The 1-Fixed-Endpoint Path Cover Problem is Polynomial on Interval Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short, on interval graphs. Given a graph G and a subset \(\mathcal{T}\) of k vertices of V(G), a k-fixed-endpoint path cover of G with respect to \(\mathcal{T}\) is a set of vertex-disjoint paths ℘ that covers the vertices of G such that the k vertices of \(\mathcal{T}\) are all endpoints of the paths in ℘. The kPC problem is to find a k-fixed-endpoint path cover of G of minimum cardinality; note that, if \(\mathcal{T}\) is empty the stated problem coincides with the classical path cover problem. In this paper, we study the 1-fixed-endpoint path cover problem on interval graphs, or 1PC for short, generalizing the 1HP problem which has been proved to be NP-complete even for small classes of graphs. Motivated by a work of Damaschke (Discrete Math. 112:49–64, 1993), where he left both 1HP and 2HP problems open for the class of interval graphs, we show that the 1PC problem can be solved in polynomial time on the class of interval graphs. We propose a polynomial-time algorithm for the problem, which also enables us to solve the 1HP problem on interval graphs within the same time and space complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhar, G.S., Peng, S.: Parallel algorithm for path covering, Hamiltonian path, and Hamiltonian cycle in cographs. In: International Conference on Parallel Processing, vol. III: Algorithms and Architecture, pp. 364–365. Pennsylvania State University Press, Pennsylvania (1990)

    Google Scholar 

  2. Arikati, S.R., Rangan, C.P.: Linear algorithm for optimal path cover problem on interval graphs. Inf. Process. Lett. 35, 149–153 (1990)

    Article  MATH  Google Scholar 

  3. Asdre, K., Nikolopoulos, S.D.: A linear-time algorithm for the k-fixed-endpoint path cover problem on cographs. Networks 50, 231–240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asdre, K., Nikolopoulos, S.D.: A polynomial solution for the k-fixed-endpoint path cover problem on proper interval graphs. In: Proc. of the 18th International Conference on Combinatorial Algorithms (IWOCA’07), Lake Macquarie, Newcastle, Australia (2007)

  5. Bertossi, A.A.: Finding Hamiltonian circuits in proper interval graphs. Inf. Process. Lett. 17, 97–101 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertossi, A.A., Bonuccelli, M.A.: Finding Hamiltonian circuits in interval graph generalizations. Inf. Process. Lett. 23, 195–200 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes—A Survey. SIAM Monographs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  8. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete Math. 112, 49–64 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. J. Theor. Comput. Sci. 10, 111–121 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5, 704–714 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980) (2nd edn., in Ann. Discrete Math. 57, Elsevier, 2004)

    MATH  Google Scholar 

  13. Hsieh, S.Y.: An efficient parallel strategy for the two-fixed-endpoint Hamiltonian path problem on distance-hereditary graphs. J. Parallel Distributed Comput. 64, 662–685 (2004)

    Article  MATH  Google Scholar 

  14. Hsieh, S.Y., Ho, C.W., Hsu, T.S., Ko, M.T.: The Hamiltonian problem on distance-hereditary graphs. Discrete Appl. Math. 154, 508–524 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems on distance-hereditary graphs. Theor. Comput. Sci. 341, 411–440 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hung, R.W., Chang, M.S.: Solving the path cover problem on circular-arc graphs by using an approximation algorithm. Discrete Appl. Math. 154, 76–105 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)

    MATH  MathSciNet  Google Scholar 

  18. Keil, J.M.: Finding Hamiltonian circuits in interval graphs. Inf. Process. Lett. 20, 201–206 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs. Comput. Math. Appl. 30, 75–83 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156, 291–298 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nakano, K., Olariu, S., Zomaya, A.Y.: A time-optimal solution for the path cover problem on cographs. Theor. Comput. Sci. 290, 1541–1556 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nikolopoulos, S.D.: Parallel algorithms for Hamiltonian problems on quasi-threshold graphs. J. Parallel Distributed Comput. 64, 48–67 (2004)

    Article  MATH  Google Scholar 

  23. Park, J.H.: One-to-many disjoint path covers in a graph with faulty elements. In: Proc. of the 10th International Computing and Combinatorics Conference (COCOON’04), pp. 392–401 (2004)

  24. Ramalingam, G., Rangan, C.P.: A unified approach to domination problems on interval graphs. Inf. Process. Lett. 27, 271–274 (1988)

    Article  MATH  Google Scholar 

  25. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63, 65–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. Assoc. Comput. Mach. 27, 445–456 (1980)

    MATH  MathSciNet  Google Scholar 

  28. Srikant, R., Sundaram, R., Singh, K.S., Rangan, C.P.: Optimal path cover problem on block graphs and bipartite permutation graphs. Theor. Comput. Sci. 115, 351–357 (1993)

    Article  MATH  Google Scholar 

  29. Suzuki, Y., Kaneko, K., Nakamori, M.: Node-disjoint paths algorithm in a transposition graph. IEICE Trans. Inf. Syst. E89-D, 2600–2605 (2006)

    Article  Google Scholar 

  30. Thomassen, C.: 2-linked graphs. Eur. J. Comb. 1, 371–378 (1980)

    MATH  MathSciNet  Google Scholar 

  31. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Int. J. Found. Comput. Sci. 18, 911–930 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros D. Nikolopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asdre, K., Nikolopoulos, S.D. The 1-Fixed-Endpoint Path Cover Problem is Polynomial on Interval Graphs. Algorithmica 58, 679–710 (2010). https://doi.org/10.1007/s00453-009-9292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9292-5

Keywords

Navigation