Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects

Abstract

In this research, we have offered a green and new synthesizing procedure for selenium nanoparticles (Se-NPs) through the utilization of Na2SeO3, in which starch has a role of stabilizer and capping agent, as the functionality of green reducing mediums is taken by glucose and ascorbic acid. According to the observations, this method has been capable of producing Se-NPs in lab conditions. Additionally, the synthesized Se-NPs can be separated from the aqueous solution of stabilizer and reducing agents by a high—speed. Certain analyzing procedures have been used to characterize the obtained particles including TEM, XRD, UV–VIS, DLS, FESEM, EDX, FTIR, and AFM. In this paper, we have investigated the antimicrobial and photocatalytic functionality of Se-NPs on Mycobacterium tuberculosis and Methylene blue (MB) and according to the results, these particles have shown satisfying activity in both cases. To be stated in exact, about 60% of MB has degraded under UV light after 150 min, which indicates the acceptable position of Se-NPs could be applied for eliminating water pollutions. Moreover, the attained data on colorectal cancer SW480 cell lines in regards to the in vitro cytotoxicity assessments have exhibited non-toxic effects, which had lasted throughout concentrations that had measured up to even 100 µg/mL within MTT assay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Misra R, Acharya S, Sahoo SK (2010) Drug Discovery Today 15:842–850

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Beun S, Glorieux T, Devaux J, Vreven J, Leloup G (2007) Dent Mater 23:51–59

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Zhang Y, Wang J, Zhang L (2010) Langmuir 26:17617–17623

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA (2011) Int J Nanomed 6:569

    CAS  Article  Google Scholar 

  5. 5.

    Maliszewska I, Juraszek A, Bielska K (2014) J Cluster Sci 25:989–1004

    CAS  Article  Google Scholar 

  6. 6.

    A.K. Shukla, S. Iravani, Green synthesis and spectroscopic characterization of nanoparticles, Nanoscience in Food and Agriculture 1, Springer, 2016, pp. 65–99.

  7. 7.

    Mollania N, Tayebee R, Narenji-Sani F (2016) Res Chem Intermed 42:4253–4271

    CAS  Article  Google Scholar 

  8. 8.

    Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Front Microbiol 5:241

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    C. Subburaman, K. Sundar, A. Muthukumaran, Materials Research Express, (2019).

  10. 10.

    Srivastava N, Mukhopadhyay M (2015) Bioprocess Biosyst Eng 38:1723–1730

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Navarro-Alarcon M, López-Martınez M (2000) Sci Total Environ 249:347–371

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Tran PA, Webster TJ (2011) Int J Nanomed 6:1553

    CAS  Google Scholar 

  13. 13.

    Ferenčík M, Ebringer L (2003) Folia Microbiol 48:417

    Article  Google Scholar 

  14. 14.

    Nguyen TH, Vardhanabhuti B, Lin M, Mustapha A (2017) Food Control 77:17–24

    CAS  Article  Google Scholar 

  15. 15.

    Kungumadevi L, Sathyamoorthy R, Chandra GH (2019) J Mater Sci Mater Electron 30:424–431

    CAS  Article  Google Scholar 

  16. 16.

    Hoseinnejad M, Jafari SM, Katouzian I (2018) Crit Rev Microbiol 44:161–181

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Kumar S, Chauhan P, Kundu V (2016) J Mater Sci Mater Electron 27:3103–3108

    CAS  Article  Google Scholar 

  18. 18.

    M. Jayapriya, K. Premkumar, M. Arulmozhi, K. Karthikeyan, Research on Chemical Intermediates, (2020) 1–18.

  19. 19.

    El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah E-DF, Shams MS, Youssef SM, Shalaby T, Bayoumi Y (2016) Environ Chem Lett 14:123–147

    CAS  Article  Google Scholar 

  20. 20.

    Fritea L, Laslo V, Cavalu S, Costea T, Vicas SI (2017) Studia Universitatis" Vasile Goldis" Arad. Seria Stiintele Vietii (Life Sciences Series) 27:203–208

    CAS  Google Scholar 

  21. 21.

    Sarkar J, Dey P, Saha S, Acharya K (2011) Micro Nano Lett 6:599–602

    CAS  Article  Google Scholar 

  22. 22.

    H.-H. Perkampus, UV-VIS Spectroscopy and its Applications, Springer Science & Business Media, 2013.

  23. 23.

    Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) J Nanomaterials 2013:60

    Article  CAS  Google Scholar 

  24. 24.

    Sutherland I (1976) J Appl Bacteriol 41:185–188

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Díaz-Infantes MS, Ruiz-Serrano MJ, Martínez-Sánchez L, Ortega A, Bouza E (2000) J Clin Microbiol 38:1988–1989

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Cole ST (1999) FEBS Lett 452:7–10

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Martin A, Camacho M, Portaels F, Palomino JC (2003) Antimicrob Agents Chemother 47:3616–3619

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Khalifa RA, Nasser MS, Gomaa AA, Osman NM, Salem HM (2013) Egyptian J Chest Diseases Tuberculosis 62:241–247

    Article  Google Scholar 

  29. 29.

    T.K. Sau, A.L. Rogach, Complex-shaped metal nanoparticles, Wiley Online Library, 2012.

  30. 30.

    Williams DB, Carter CB (1996) The transmission electron microscope. Springer, Transmission electron microscopy, pp 3–17

    Google Scholar 

  31. 31.

    Chescoe D, Goodhew PJ (1990) The operation of transmission and scanning electron microscopes. Oxford University Press, New York

    Google Scholar 

  32. 32.

    Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York

    Google Scholar 

  33. 33.

    H.E. Swanson, Standard X-ray Diffraction Powder Patterns: Data for 45 inorganic substances, National Bureau of Standards, 1955.

  34. 34.

    R.C.H. Cik, C.T. Foo, A.F.O. Nor.

  35. 35.

    d’Alfonso A, Freitag B, Klenov D, Allen L (2010) Physical Review B 81:100101

    Article  CAS  Google Scholar 

  36. 36.

    Hollerith C, Wernicke D, Bühler M, Feilitzsch F, Huber M, Höhne J, Hertrich T, Jochum J, Phelan K, Stark M (2004) Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrometers Detectors Associated Equipment 520:606–609

    CAS  Article  Google Scholar 

  37. 37.

    Small J (2002) J Res Nat Inst Stand Technol 107:555

    CAS  Article  Google Scholar 

  38. 38.

    Hoo CM, Starostin N, West P, Mecartney ML (2008) J Nanopart Res 10:89–96

    CAS  Article  Google Scholar 

  39. 39.

    C.E. Anderson, G.G. Pins, Google Patents, 1964.

  40. 40.

    R. Schöb, Google Patents, 2004.

  41. 41.

    Kazemi M, Akbari A, Soleimanpour S, Feizi N, Darroudi M (2019) J Cluster Sci 30:767–775

    CAS  Article  Google Scholar 

  42. 42.

    Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR, Mizrahi V, Parish T, Rubin E (2010) J Bacteriol 192:3645–3653

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Palomino J-C, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Antimicrob Agents Chemother 46:2720–2722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Flournoy D, Twilley J (2001) Clinical Laboratory Science 14:85–88

    CAS  PubMed  Google Scholar 

  45. 45.

    Van den Driessche F, Rigole P, Brackman G, Coenye T (2014) J Microbiol Methods 98:31–34

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Sarker SD, Nahar L, Kumarasamy Y (2007) Methods 42:321–324

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Andrews JM (2001) J Antimicrob Chemother 48:5–16

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Hubbard CR (1986) Powder Diffr 1:40–43

    CAS  Article  Google Scholar 

  49. 49.

    McMurdie HF, Morris MC, Evans EH, Paretzkin B, Wong-Ng W, Ettlinger L, Hubbard CR (1986) Powder Diffr 1:64–77

    CAS  Article  Google Scholar 

  50. 50.

    Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami, M. Darroudi, Bioprocess and Biosystems Engineering, (2020).

  51. 51.

    M. Alikhani, M. Hakimi, K. Moeini, V. Eigner, M. Dusek, Journal of Inorganic and Organometallic Polymers and Materials, (2020).

  52. 52.

    Ganeev R, Ryasnyansky A, Kamalov SR, Kodirov M, Usmanov T (2001) J Phys D Appl Phys 34:1602

    CAS  Article  Google Scholar 

  53. 53.

    N Chang, I Choi, H Shim, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12 (2004) 837–846.

  54. 54.

    W. Brown, Dynamic light scattering: the method and some applications, Clarendon press Oxford, 1993.

  55. 55.

    Pecora R (2000) J Nanopart Res 2:123–131

    CAS  Article  Google Scholar 

  56. 56.

    L.S. Shyni, K. Jagadish, S. Srikantaswamy, M. Abhilash, Journal for Research| Volume, 2 (2016).

  57. 57.

    S.L. Flegler, S.L. Flegler, Scanning & Transmission Electron Microscopy, Oxford University Press, 1997.

  58. 58.

    S. Chandramohan, K. Sundar, A. Muthukumaran, Materials Research Express, 6 (2019) 0850i0852.

  59. 59.

    A. Rangrazi, H. Bagheri, K. Ghazvini, A. Boruziniat, M. Darroudi, Materials Research Express, 6 (2020) 1250h1253.

  60. 60.

    Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Colloids Surf, B 88:196–201

    CAS  Article  Google Scholar 

  61. 61.

    Huzinaga S, McWilliams D, Domsky B (1971) J Chem Phys 54:2283–2284

    CAS  Article  Google Scholar 

  62. 62.

    Zare B, Babaie S, Setayesh N, Shahverdi AR (2013) Nanomed J 1:13–19

    Google Scholar 

  63. 63.

    Dhanjal S, Cameotra SS (2010) Microb Cell Fact 9:1–11

    Article  CAS  Google Scholar 

  64. 64.

    R.L. Lloyd, Google Patents, 1948.

  65. 65.

    M. Hakimi, M. Alikhani, Journal of Inorganic and Organometallic Polymers and Materials, (2019).

  66. 66.

    C. Mellinas, A. Jiménez, M.d.C. Garrigós, Molecules, 24 (2019) 4048.

  67. 67.

    Alagesan V, Venugopal S (2019) Bionanoscience 9:105–116

    Article  Google Scholar 

  68. 68.

    M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar, M.H.N. Abd Hamid, Ceramics International, 40 (2014) 4827–4831.

  69. 69.

    M. Darroudi, Z. Sabouri, R. Kazemi Oskuee, A. Khorsand Zak, H. Kargar, M.H.N.A. Hamid, Ceramics International, 39 (2013) 9195–9199.

Download references

Acknowledgment

The technical support for this work has been provided by Payame Noor University of Mashhad and Mashhad University of Medical Sciences based on the Ph.D. thesis of Mrs. M. Kazemi.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Majid Darroudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M., Akbari, A., Sabouri, Z. et al. Green synthesis of colloidal selenium nanoparticles in starch solutions and investigation of their photocatalytic, antimicrobial, and cytotoxicity effects. Bioprocess Biosyst Eng (2021). https://doi.org/10.1007/s00449-021-02515-9

Download citation

Keywords

  • Selenium nanoparticle
  • Starch
  • Green synthesis
  • Photocatalyst
  • Cytotoxicity