Improvement of cadaverine production in whole cell system with baker’s yeast for cofactor regeneration


Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5′-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5′-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker’s yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5′-triphosphate (ATP) with the simple addition of baker’s yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5′-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M l-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker’s yeast and jhAY strain. It is expected that baker’s yeast could be applied to other reactions requiring an ATP regeneration system.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Han Y-H, Park Y-L, Yang S-Y, Jung H-R, Joo JC, Song B-K, Lee SH, Park K, Ahn J-O, Yang Y-H (2020) Selective extraction of glutaric acid from biological production systems using n-butanol. J Ind Eng Chem 82:98–104

    CAS  Article  Google Scholar 

  2. 2.

    Wei G, Zhang A, Lu X, He F, Li H, Xu S, Li G, Chen K, Ouyang P (2020) An environmentally friendly strategy for cadaverine bio-production: in situ utilization of CO2 self-released from l-lysine decarboxylation for pH control. J CO2 Util 37:278–284

    CAS  Article  Google Scholar 

  3. 3.

    Xue C, Hsu K-M, Ting W-W, Huang S-F, Lin H-Y, Li S-F, Chang J-S, Ng I-S (2020) Efficient biotransformation of l-lysine into cadaverine by strengthening pyridoxal 5′-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochem Eng J 107659.

  4. 4.

    Shin J, Joo JC, Lee E, Hyun SM, Kim HJ, Park SJ, Yang Y-H, Park K (2018) Characterization of a whole-cell biotransformation using a constitutive lysine decarboxylase from Escherichia coli for the high-level production of cadaverine from industrial grade l-lysine. Appl Biochem Biotechnol 185:909–924

    CAS  Article  Google Scholar 

  5. 5.

    Liu Y, Zheng Y, Wu H, Zhang W, Ren T, You S, Qi W, Su R, He Z (2020) Development of an integrated process for the production of high-purity cadaverine from lysine decarboxylase. J Chem Technol Biotechnol 95:1542–1549

    CAS  Article  Google Scholar 

  6. 6.

    Bhatia SK, Bhatia RK, Yang Y-H (2016) Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev Environ Sci Bio Technol 15:639–663

    CAS  Article  Google Scholar 

  7. 7.

    Kim J, Seo H-M, Bhatia SK, Song H-S, Kim J-H, Jeon J-M, Choi K-Y, Kim W, Yoon J-J, Kim Y-G (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep 7:39768

    CAS  Article  Google Scholar 

  8. 8.

    Kim J-H, Kim HJ, Kim YH, Jeon JM, Song HS, Kim J, No S-Y, Shin J-H, Choi K-Y, Park KM (2016) Functional study of lysine decarboxylases from Klebsiella pneumoniae in Escherichia coli and application of whole cell bioconversion for cadaverine production. J Microbiol Biotechnol 26:1586–1592

    CAS  Article  Google Scholar 

  9. 9.

    Zhou N, Zhang A, Wei G, Yang S, Xu S, Chen K, Ouyang P (2020) Cadaverine production from l-lysine with chitin-binding protein-mediated lysine decarboxylase immobilization. Front Bioeng Biotechnol 8:103

    Article  Google Scholar 

  10. 10.

    Bhatia SK, Yang Y-H (2017) Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio Technol 16:327–345

    CAS  Article  Google Scholar 

  11. 11.

    Bhatia SK, Joo H-S, Yang Y-H (2018) Biowaste-to-bioenergy using biological methods—a mini-review. Energy Convers Manag 177:640–660

    CAS  Article  Google Scholar 

  12. 12.

    Rohles CM, Gläser L, Kohlstedt M, Gießelmann G, Pearson S, del Campo A, Becker J, Wittmann C (2018) A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6, 5 using metabolically engineered Corynebacterium glutamicum. Green Chem 20:4662–4674

    CAS  Article  Google Scholar 

  13. 13.

    Hong YG, Moon YM, Choi TR, Jung HR, Yang SY, Ahn JO, Joo JC, Park K, Kim YG, Bhatia SK (2019) Enhanced production of glutaric acid by NADH oxidase and GabD-reinforced bioconversion from l-lysine. Biotechnol Bioeng 116:333–341

    CAS  Article  Google Scholar 

  14. 14.

    Hong Y-G, Moon Y-M, Hong J-W, No S-Y, Choi T-R, Jung H-R, Yang S-Y, Bhatia SK, Ahn J-O, Park K-M (2018) Production of glutaric acid from 5-aminovaleric acid using Escherichia coli whole cell bio-catalyst overexpressing GabTD from Bacillus subtilis. Enzyme Microbial Technol 118:57–65

    CAS  Article  Google Scholar 

  15. 15.

    Yang S-Y, Choi T-R, Jung H-R, Park Y-L, Han Y-H, Song H-S, Gurav R, Bhatia SK, Park K, Ahn J-O (2020) Development of glutaric acid production consortium system with α-ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli. Enzyme Microb Technol 133:109446

    CAS  Article  Google Scholar 

  16. 16.

    Yang S-Y, Choi T-R, Jung H-R, Park Y-L, Han Y-H, Song H-S, Bhatia SK, Park K, Ahn J-O, Jeon W-Y (2019) Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme Microb Technol 128:72–78

    CAS  Article  Google Scholar 

  17. 17.

    Hui H, Bai Y, Fan T-P, Zheng X, Cai Y (2020) Biosynthesis of putrescine from l-arginine using engineered Escherichia coli whole cells. Catalysts 10:947

    CAS  Article  Google Scholar 

  18. 18.

    Sun L, Gong M, Lv X, Huang Z, Gu Y, Li J, Du G, Liu L (2020) Current advance in biological production of short-chain organic acid. Appl Microbiol Biotechnol

  19. 19.

    Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, Choi KY, Yang Y-H, Park K (2015) Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J Microbiol Biotechnol 25:1108–1113

    CAS  Article  Google Scholar 

  20. 20.

    Sagong H-Y, Kim K-J (2017) Lysine decarboxylase with an enhanced affinity for pyridoxal 5-phosphate by disulfide bond-mediated spatial reconstitution. PLoS ONE 12:e0170163

    Article  Google Scholar 

  21. 21.

    Park SH, Soetyono F, Kim HK (2017) Cadaverine production by using cross-linked enzyme aggregate of Escherichia coli lysine decarboxylase. J Microbiol Biotechnol 27:289–296

    CAS  Article  Google Scholar 

  22. 22.

    Rui J, You S, Zheng Y, Wang C, Gao Y, Zhang W, Qi W, Su R, He Z (2020) High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Biores Technol 302:122844

    CAS  Article  Google Scholar 

  23. 23.

    Kim HT, Baritugo K-A, Oh YH, Kang K-H, Jung YJ, Jang S, Song BK, Kim I-K, Lee MO, Hwang YT (2019) High-level conversion of l-lysine into cadaverine by Escherichia coli whole cell biocatalyst expressing Hafnia alveil-lysine decarboxylase. Polymers 11:1184

    CAS  Article  Google Scholar 

  24. 24.

    Hong EY, Lee SG, Park BJ, Lee JM, Yun H, Kim BG (2017) Simultaneously enhancing the stability and catalytic activity of multimeric lysine decarboxylase CadA by engineering interface regions for enzymatic production of cadaverine at high concentration of lysine. Biotechnol J 12:1700278

    Article  Google Scholar 

  25. 25.

    Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108:93–103

    CAS  Article  Google Scholar 

  26. 26.

    Moorthi YM, Yang SY, Choi TR, Jung HR, Song HS, Hoon Han Y, Park HY, Bhatia SK, Gurav R, Park K (2019) Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxalphosphate and ATP. Enzyme Microb Technol 127:58–64

    Article  Google Scholar 

  27. 27.

    Kim J-H, Kim J, Kim H-J, Sathiyanarayanan G, Bhatia SK, Song H-S, Choi Y-K, Kim Y-G, Park K, Yang Y-H (2017) Biotransformation of pyridoxal 5′-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme Microb Technol 104:9–15

    CAS  Article  Google Scholar 

  28. 28.

    Kim J, Seo H-M, Bhatia SK, Song H-S, Kim J-H, Jeon J-M, Choi K-Y, Kim W, Yoon J-J, Kim Y-G (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep 7:1–9

    Article  Google Scholar 

  29. 29.

    Leong YK, Chen C-H, Huang S-F, Lin H-Y, Li S-F, Ng I-S, Chang J-S (2020) High-level l-lsyine bioconversion into cadaverine with enhanced productivity using engineered Escherichia coli whole-cell biocatalyst. Biochem Eng J 107547

  30. 30.

    Kwak DH, Lim HG, Yang J, Seo SW, Jung GY (2017) Synthetic redesign of Escherichia coli for cadaverine production from galactose. Biotechnol Biofuels 10:20

    Article  Google Scholar 

  31. 31.

    Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, Ouyang P (2015) Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep 5:1–10

    Google Scholar 

  32. 32.

    Yang S-Y, Han Y-H, Park Y-L, Park J-Y, No S-y, Jeong D, Park S, Park HY, Kim W, Seo S-O (2020) Production of L-theanine Using Escherichia coli WHOLE-CELL OVEREXPRESSING γ-glutamylmethylamide synthetase with baker’s yeast. J Microbiol Biotechnol 30:785–792

    Article  Google Scholar 

  33. 33.

    Kameda A, Shiba T, Kawazoe Y, Satoh Y, Ihara Y, Munekata M, Ishige K, Noguchi T (2001) A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. J Biosci Bioeng 91:557–563

    CAS  Article  Google Scholar 

  34. 34.

    Yan B, Ding Q, Ou L, Zou Z (2014) Production of glucose-6-phosphate by glucokinase coupled with an ATP regeneration system. World J Microbiol Biotechnol 30:1123–1128

    CAS  Article  Google Scholar 

  35. 35.

    Resnick SM, Zehnder AJ (2000) In vitro ATP regeneration from polyphosphate and AMP by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl Environ Microbiol 66:2045–2051

    CAS  Article  Google Scholar 

  36. 36.

    Wakisaka S, Ohshima Y, Ogawa M, Tochikura T, Tachiki T (1998) Characteristics and efficiency of glutamine production by coupling of a bacterial glutamine synthetase reaction with the alcoholic fermentation system of baker’s yeast. Appl Environ Microbiol 64:2952–2957

    CAS  Article  Google Scholar 

  37. 37.

    Horinouchi N, Sakai T, Kawano T, Matsumoto S, Sasaki M, Hibi M, Shima J, Shimizu S, Ogawa J (2012) Construction of microbial platform for an energy-requiring bioprocess: practical 2′-deoxyribonucleoside production involving a C−C coupling reaction with high energy substrates. Microb Cell Fact 11:1–8

    Article  Google Scholar 

  38. 38.

    Yamamoto S, Wakayama M, Tachiki T (2005) Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker’s yeast cells. Biosci Biotechnol Biochem 69:784–789

    CAS  Article  Google Scholar 

  39. 39.

    Lin J-P, Tian J, You J-F, Jin Z-H, Xu Z-N, Cen P-L (2004) An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation. Biochem Eng J 21:19–25

    CAS  Article  Google Scholar 

  40. 40.

    Kim YH, Kim HJ, Shin J-H, Bhatia SK, Seo H-M, Kim Y-G, Lee YK, Yang Y-H, Park K (2015) Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. J Mol Catal B Enzym 115:151–154

    CAS  Article  Google Scholar 

  41. 41.

    Huang T-C, Chen M-H, Ho C-T (2002) Stability of biologically active pyridoxal and pyridoxal phosphate in the presence of lysine. J Am Chem Soc 143–154

  42. 42.

    Yamamoto S, Wakayama M, Tachiki T (2008) Cloning and expression of Methylovorus mays no. 9 gene encoding γ-glutamylmethylamide synthetase: an enzyme usable in theanine formation by coupling with the alcoholic fermentation system of baker’s yeast. Biosci Biotechnol Biochem 72:101–109

    CAS  Article  Google Scholar 

Download references


This study was supported by the National Research Foundation of Korea (NRF) (NRF-2019R1F1A1058805 and NRF-2019M3E6A1103979), and the Research Program to solve the social issues of the NRF funded by the Ministry of Science and ICT (2017M3A9E4077234). This work was also supported by R&D Program of MOTIE/KEIT (20009508).

Author information



Corresponding author

Correspondence to Yung-Hun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, YH., Kim, H.J., Choi, TR. et al. Improvement of cadaverine production in whole cell system with baker’s yeast for cofactor regeneration. Bioprocess Biosyst Eng (2021).

Download citation


  • Bioproduction
  • Cadaverine
  • Pyridoxal 5′-phosphate
  • Adenosine 5′-triphosphate
  • Baker’s yeast