Abstract
The process dynamics of anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR), and the potential role of elemental sulfur as intermediate are presented in this paper. Thermodynamic screening and experimental evidence from the literature conclude that a prominent model to describe AOM-SR is based on the concept that anaerobic methane oxidation proceeds through the production of the intermediate elemental sulfur. Two microbial groups are involved in the process: (a) anaerobic methanotrophs (ANME-2) and (b) Desulfosarcina/Desulfococcus sulfur reducers cluster (DSS). In this work, a dynamic model was developed to explore the interactions between biotic and abiotic processes to simulate the microbial activity, the chemical composition and speciation of the liquid phase, and the gas phase composition in the reactor headspace. The model includes the microbial kinetics for the symbiotic growth of ANME-2 and DSS, mass transfer phenomena between the gas and liquid phase for methane, hydrogen sulfide, and carbon dioxide and acid–base reactions for bicarbonate, sulfide, and ammonium. A data set from batch experiments, running for 250 days in artificial seawater inoculated with sediment from Marine Lake Grevelingen (The Netherlands) was used to calibrate the model. The inherent characteristics of AOM-SR make the identification of the kinetic parameters difficult due to the high correlation between them. However, by meaningfully selecting a set of kinetic parameters, the model simulates successfully the experimental data for sulfate reduction and sulfide production. The model can be considered as the basic structure for simulating continuous flow three-phase engineered systems based on AOM-SR.
This is a preview of subscription content, access via your institution.


Reprinted with permission from [39]. Copyright (2007) American Chemical Society





References
- 1.
Bertrand J-C, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T (2015) Environmental microbiology: fundamentals and applications. Springer, London
- 2.
Jørgensen BB, Findlay AJ, Pellerin A (2019) The biogeochemical sulfur cycle of marine sediments. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00849
- 3.
Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20(4):269–294. https://doi.org/10.1080/01490450303896
- 4.
Knittel K, Boetius A (2011) Anaerobic oxidation of methane with sulfate. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, Dordrecht, pp 36–47. https://doi.org/10.1007/978-1-4020-9212-1_10
- 5.
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626. https://doi.org/10.1038/35036572
- 6.
Devol AH, Anderson JJ, Kuivila K, Murray JW (1984) A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochim Cosmochim Acta 48(5):993–1004. https://doi.org/10.1016/0016-7037(84)90191-1
- 7.
Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark) 1. Limnol Oceanogr 30(5):944–955. https://doi.org/10.4319/lo.1985.30.5.0944
- 8.
Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541. https://doi.org/10.1038/nature11656
- 9.
Alperin M, Reeburgh W, Whiticar M (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2(3):279–288. https://doi.org/10.1029/GB002i003p00279
- 10.
Holler T, Wegener G, Knittel K, Boetius A, Brunner B, Kuypers MMM, Widdel F (2009) Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro. Environ Microbiol Rep 1(5):370–376. https://doi.org/10.1111/j.1758-2229.2009.00074.x
- 11.
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531. https://doi.org/10.1038/nature15512
- 12.
Musat N, Musat F, Weber PK, Pett-Ridge J (2016) Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol 41:114–121. https://doi.org/10.1016/j.copbio.2016.06.007
- 13.
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570. https://doi.org/10.1038/nature12375
- 14.
Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526(7574):587–590. https://doi.org/10.1038/nature15733
- 15.
Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics. Nat Protoc 9(5):1038–1048. https://doi.org/10.1038/nprot.2014.067
- 16.
Dufrêne YF (2014) Atomic force microscopy in microbiology: new structural and functional insights into the microbial cell surface. mBiol 5(4):e01363-01314. https://doi.org/10.1128/mBio.01363-14
- 17.
Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8(4):451–463. https://doi.org/10.1029/94gb01800
- 18.
Bhattarai S, Cassarini C, Rene ER, Zhang Y, Esposito G, Lens PNL (2018) Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter. Bioresour Technol 259:433–441. https://doi.org/10.1016/j.biortech.2018.03.018
- 19.
Bhattarai S, Cassarini C, Naangmenyele Z, Rene ER, Gonzalez-Gil G, Esposito G, Lens PNL (2017) Microbial sulfate-reducing activities in anoxic sediment from Marine Lake Grevelingen: screening of electron donors and acceptors. Limnology 19(1):31–41. https://doi.org/10.1007/s10201-017-0516-0
- 20.
Meulepas RJW, Jagersma CG, Gieteling J, Buisman CJN, Stams AJM, Lens PNL (2009) Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors. Biotechnol Bioeng 104(3):458–470. https://doi.org/10.1002/bit.22412
- 21.
Cassarini C, Rene ER, Bhattarai S, Vogt C, Musat N, Lens PNL (2019) Anaerobic methane oxidation coupled to sulfate reduction in a biotrickling filter: Reactor performance and microbial community analysis. Chemosphere 236:124290. https://doi.org/10.1016/j.chemosphere.2019.07.021
- 22.
Amodeo C, Masi S, Van Hulle SWH, Zirpoli P, Mancini IM, Caniani D (2015) Methane oxidation in a biofilter (Part 1): development of a mathematical model for designing and optimization. J Environ Sci Health Part A 50(13):1393–1403. https://doi.org/10.1080/10934529.2015.1064277
- 23.
Amodeo C, Masi S, Van Hulle SWH, Zirpoli P, Mancini IM, Caniani D (2015) Methane oxidation in a biofilter (Part 2): A lab-scale experiment for model calibration. J Environ Sci Health Part A 50(13):1404–1409. https://doi.org/10.1080/10934529.2015.1064278
- 24.
He Z, Cai C, Geng S, Lou L, Xu X, Zheng P, Hu B (2013) Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320. https://doi.org/10.1016/j.biortech.2013.08.001
- 25.
Modin O (2018) A mathematical model of aerobic methane oxidation coupled to denitrification. Environ Technol 39(9):1217–1225. https://doi.org/10.1080/09593330.2017.1323961
- 26.
Lee H-S, Tang Y, Rittmann BE, Zhao H-P (2018) Anaerobic oxidation of methane coupled to denitrification: fundamentals, challenges, and potential. Crit Rev Environ Sci Technol 48(19–21):1067–1093. https://doi.org/10.1080/10643389.2018.1503927
- 27.
Vavilin VA (2018) Anaerobic methane oxidation by nitrate: kinetic isotope effect. Environ Dyn Glob Clim Change 10 (1):3–16. Doi: https://doi.org/10.17816/edgcc10534
- 28.
He X, Chadwick G, Kempes C, Shi Y, McGlynn S, Orphan V, Meile C (2019) Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environ Microbiol 21(2):631–647. https://doi.org/10.1111/1462-2920.14507
- 29.
Butler JN (1991) Carbon dioxide equilibria and their applications. Lewis Publishers, Michigan
- 30.
Barnes R, Goldberg E (1976) Methane production and consumption in anoxic marine sediments. Geology 4(5):297–300. https://doi.org/10.1130/0091-7613(1976)4%3C297:MPACIA%3E2.0.CO;2
- 31.
Boudreau BP (1997) Diagenetic models and their implementation, vol 505. Springer, Berlin
- 32.
Egger M, Lenstra W, Jong D, Meysman FJ, Sapart CJ, Van der Veen C, Röckmann T, Gonzalez S, Slomp CP (2016) Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS ONE 11(8):1–22. https://doi.org/10.1371/journal.pone.0161609
- 33.
Rooze J, Egger M, Tsandev I, Slomp CP (2016) Iron-dependent anaerobic oxidation of methane in coastal surface sediments: potential controls and impact. Limnol Oceanogr 61(S1):S267–S282. https://doi.org/10.1002/lno.10275
- 34.
Meulepas RJW, Stams AJM, Lens PNL (2010) Biotechnological aspects of sulfate reduction with methane as electron donor. Rev Environ Sci Bio/Technol 9(1):59–78. https://doi.org/10.1007/s11157-010-9193-8
- 35.
Bhattarai S, Cassarini C, Lens PNL (2019) Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol Mol Biol Rev. https://doi.org/10.1128/MMBR.00074-18
- 36.
Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2(5):477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.x
- 37.
Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean margin systems. Springer Berlin Heidelberg, Berlin, pp 457–477. https://doi.org/10.1007/978-3-662-05127-6_28
- 38.
Alperin MJ, Hoehler TM (2009) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am J Sci 309(10):869–957. https://doi.org/10.2475/10.2009.01
- 39.
Rickard D, Luther GW (2007) Chemistry of iron sulfides. Chem Rev 107(2):514–562. https://doi.org/10.1021/cr0503658
- 40.
Rittmann BE, McCarty PL (2020) Environmental biotechnology: principles and applications, 2nd edn. McGraw-Hill, New York
- 41.
Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41(1):100–180
- 42.
Dolfing J, Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5(1):21–28. https://doi.org/10.1007/BF00695210
- 43.
Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York
- 44.
Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 25(2):175–243. https://doi.org/10.1111/j.1574-6976.2001.tb00576.x
- 45.
Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7(8):568–577. https://doi.org/10.1038/nrmicro2166
- 46.
Sorensen KB, Finster K, Ramsing NB (2001) Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microb Ecol 42(1):1–10. https://doi.org/10.1007/s002480000083
- 47.
Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5 (6):1587-1599. https://doi.org/10.5194/bg-5-1587-2008
- 48.
Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4(5):296–305. https://doi.org/10.1046/j.1462-2920.2002.00299.x
- 49.
Kamyshny A, Gun J, Rizkov D, Voitsekovski T, Lev O (2007) Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization. Environ Sci Technol 41(7):2395–2400. https://doi.org/10.1021/es062637+
- 50.
Helz GR (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem Trans 15:13–13. https://doi.org/10.1186/s12932-014-0013-x
- 51.
Kleinjan WE, de Keizer A, Janssen AJH (2005) Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur. Colloids Surf B Biointerfaces 43(3):228–237. https://doi.org/10.1016/j.colsurfb.2005.05.004
- 52.
Kamyshny A, Goifman A, Gun J, Rizkov D, Lev O (2004) Equilibrium distribution of polysulfide ions in aqueous solutions at 25 degrees C: a new approach for the study of polysulfides’ equilibria. Environ Sci Technol 38(24):6633–6644. https://doi.org/10.1021/es049514e
- 53.
Rickard D (2012) Sulfidic sediments and sedimentary rocks, Developments in sedimentology, vol 65. Elsevier, Amsterdam
- 54.
Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151(3):232–237. https://doi.org/10.1007/bf00413135
- 55.
Finster K, Liesack W, Thamdrup B (1998) Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. Nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64(1):119–125
- 56.
Finster K (2008) Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29(3–4):281–292. https://doi.org/10.1080/17415990802105770
- 57.
Cassarini C, Rene ER, Bhattarai S, Esposito G, Lens PNL (2017) Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter. Bioresour Technol 240:214–222. https://doi.org/10.1016/j.biortech.2017.03.003
- 58.
Vavilin V, Lokshina L, Rytov S (2019) Using kinetic isotope effect to evaluate the significance of the sequential and parallel steps: formation of microbial consortium during reversible anaerobic methane oxidation coupled with sulfate reduction. Water Sci Technol 79(11):2056–2067. https://doi.org/10.2166/wst.2019.201
- 59.
McCarty PL (2007) Thermodynamic electron equivalents model for bacterial yield prediction: modifications and comparative evaluations. Biotechnol Bioeng 97(2):377–388. https://doi.org/10.1002/bit.21250
- 60.
Dale AW, Regnier P, Van Cappellen P (2006) Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am J Sci 306(4):246–294. https://doi.org/10.2475/ajs.306.4.246
- 61.
Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ Microbiol 9(1):187–196. https://doi.org/10.1111/j.1462-2920.2006.01127.x
- 62.
Zhang Y, Henriet J-P, Bursens J, Boon N (2010) Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour Technol 101(9):3132–3138. https://doi.org/10.1016/j.biortech.2009.11.103
- 63.
Beyenal H, Chen SN, Lewandowski Z (2003) The double substrate growth kinetics of Pseudomonas aeruginosa. Enzyme Microb Technol 32(1):92–98. https://doi.org/10.1016/S0141-0229(02)00246-6
- 64.
Zinn M, Witholt B, Egli T (2004) Dual nutrient limited growth: models, experimental observations, and applications. J Biotechnol 113(1–3):263–279. https://doi.org/10.1016/j.jbiotec.2004.03.030
- 65.
Cherif M, Loreau M (2010) Towards a more biologically realistic use of Droop’s equations to model growth under multiple nutrient limitation. Oikos 119(6):897–907. https://doi.org/10.1111/j.1600-0706.2010.18397.x
- 66.
Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, Chichester
- 67.
Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Elsevier, Amsterdam
- 68.
Rumble JR, Lide DR, Bruno TJ (2018) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton
- 69.
Iversen N, Jørgensen BB (1993) Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim Cosmochim Acta 57(3):571–578. https://doi.org/10.1016/0016-7037(93)90368-7
- 70.
Poling BE, Prausnitz JM, O'Connell JP, Reid RCPog, liquids (2001) The properties of gases and liquids. 5th ed. / Bruce E. Poling, John M. Prausnitz, John P. O'Connell. edn. McGraw-Hill, New York ; London
- 71.
Teramoto M, Tai S, Nishii K, Teranishi H (1974) Effects of pressure on liquid-phase mass transfer coefficients. Chem Eng J 8(3):223–226. https://doi.org/10.1016/0300-9467(74)85027-6
- 72.
Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15(8):4399–4981
- 73.
Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71(7):3725–3733. https://doi.org/10.1128/aem.71.7.3725-3733.2005
- 74.
Cassarini C, Zhang Y, Lens PNL (2019) Pressure selects dominant anaerobic methanotrophic phylotype and sulfate reducing bacteria in coastal marine lake Grevelingen sediment. Front Environ Sci. https://doi.org/10.3389/fenvs.2018.00162
- 75.
Bhattarai S, Cassarini C, Gonzalez-Gil G, Egger M, Slomp CP, Zhang Y, Esposito G, Lens PNL (2017) Anaerobic methane-oxidizing microbial community in a coastal marine sediment: anaerobic methanotrophy dominated by ANME-3. Microb Ecol 74(3):608–622. https://doi.org/10.1007/s00248-017-0978-y
- 76.
Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42(18):6791–6799. https://doi.org/10.1021/es800120b
- 77.
Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81(1):271–282. https://doi.org/10.1023/A:1020587206351
- 78.
Meyerdierks A, Kube M, Kostadinov I, Teeling H, Glöckner FO, Reinhardt R, Amann R (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12(2):422–439. https://doi.org/10.1111/j.1462-2920.2009.02083.x
- 79.
Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10(1):162–173. https://doi.org/10.1111/j.1462-2920.2007.01441.x
- 80.
Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G (2018) Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ Microbiol 20(5):1651–1666. https://doi.org/10.1111/1462-2920.14077
- 81.
Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, Zhang X-X, Xiao X, Boon N (2014) Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8(5):1069–1078. https://doi.org/10.1038/ismej.2013.212
- 82.
Skennerton CT, Chourey K, Iyer R, Hettich RL, Tyson GW, Orphan VJ (2017) Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 8(4):e00530-00517. https://doi.org/10.1128/mBio.00530-17
- 83.
Gao Y, Lee J, Neufeld JD, Park J, Rittmann BE, Lee H-S (2017) Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-05180-9
Acknowledgements
The experimental part of this paper was funded by the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments, Grant Agreement FPA No. 2010-0009).
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Code availability
The source code developed in this paper is available without support for non-commercial use upon request from the corresponding author.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hatzikioseyian, A., Bhattarai, S., Cassarini, C. et al. Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate. Bioprocess Biosyst Eng (2021). https://doi.org/10.1007/s00449-020-02495-2
Received:
Accepted:
Published:
Keywords
- Anaerobic oxidation of methane (AOM)
- Anaerobic methanotroph (ANME-2)
- Sulfate reducing bacteria (SRB)
- AOM-SR mechanism
- Modeling