Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications

Abstract

The progress of nanoparticles production by eco-friendly route, with desirable chemical and physical characteristics, and their application in helpful fields is still under investigation. Therefore, this study aimed at biosynthesis, characterization, and biomedical applications of silver nanoparticles (AgNPs) using yeasts metabolite. The yeast strains, Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, were used for extracellular biosynthesis of AgNPsK and AgNPsU, respectively. AgNPs were characterized by UV–visible spectrophotometry, transmission electron microscopy (TEM), Fourier Transformed Infrared (FTIR) spectrum and dynamic light scatter (DLS). TEM image showed well dispersed round and cubic regular particles with size ranges of 12.4 ± 6.02 nm for AgNPsU and 20.655 ± 9.48 nm for AgNPsK. According to DLS analysis, the mean size diameters of AgNPsU and AgNPsK were 20.3–21.5 and 29.6–30.14 nm, respectively. AgNPs showed highly significant inhibitory activity against gram-positive bacteria (Bacillus subtilis ATCC6633 and Staphylococcus aureus ATCC29213), gram-negative bacteria (Pseudomonas aeruginosa ATCC27953), Candida tropicalis ATCC750, and Fusarium oxysporium NRC21. The anti-inflammatory activity of AgNPs revealed that paw edema was inhibited by the oral administration of the two biosynthesized silver-nanoparticles. In addition, they showed carrageenan activity nearest to indomethacin. All fabricated AgNPs showed a significant analgesic effect after one hour of administration, which was comparable to aspirin. Further, both AgNPsK and AgNPsU demonstrated a significant anticancer activity against HCT-116 (Colon cell line) with IC50 values 0.29, 0.24 µg ml−1, respectively, and PC3 (Prostate cell line) with IC50 values 0.57, 0.50 µg ml−1, respectively. No ulcerogenic effects of AgNPs were detected on the rats’ stomach and it was safe on the gastric profile.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Majeed S, Danish M, Zahrudin AH, Dash GK (2018) Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int J Mod Sci 4:86–92

    Google Scholar 

  2. 2.

    Vijayakumara S, Malaikozhundana B, Saravanakumarb K, Duran-Larac EF, Wangb M, Vaseeharana B (2019) Garlic clove extract assisted silver nanoparticle—antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol, B 198:111558. https://doi.org/10.1016/j.jphotobiol.2019.111558

    CAS  Article  Google Scholar 

  3. 3.

    Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    CAS  Google Scholar 

  5. 5.

    Ammar HA, Rabie GH, Mohamed E (2019) Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess Biosyst Eng 42:1947–1961

    CAS  PubMed  Google Scholar 

  6. 6.

    Gahlawat G, Choudhury RA (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967

    CAS  Google Scholar 

  7. 7.

    Skalickova S, Baron M, Sochor J (2017) Nanoparticles biosynthesized by yeast: a review of their application. Kvasny Prum 6(63):290–292. https://doi.org/10.18832/kp201727

    Article  Google Scholar 

  8. 8.

    Moghaddam AB, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    CAS  Google Scholar 

  9. 9.

    Feng H, Liu S, Huang X, Ren R, Zhou Y, Song C, Qian D (2017) Green biosynthesis of CdS nanoparticles using yeast cells for fluorescence detection of nucleic acids and electrochemical detection of hydrogen peroxide. Int J Electrochem Sci 12(1):618–628

    CAS  Google Scholar 

  10. 10.

    Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100

    Google Scholar 

  11. 11.

    Eugenio M, Muller N, Frases S et al (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. Rsc Adv 6(12):9893–9904

    CAS  Google Scholar 

  12. 12.

    Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D (2008) Preferential killing of cancer cells and activated human T cells using zinc oxide nanoparticles. Nanotechnology 19:295103–295113

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Vasanth K, Ilango K, Mohankumar R (2014) Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B: Biointerfaces 117:354–359

    CAS  PubMed  Google Scholar 

  14. 14.

    Basu JM, Perumal M, Palanisamy S, Munusamy A (2015) Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta, Part A 138:120–129

    Google Scholar 

  15. 15.

    Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30(11):2797–2803

    CAS  PubMed  Google Scholar 

  16. 16.

    Arun G, Eyini M, Gunasekaran PG (2015) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090

    Google Scholar 

  17. 17.

    Ammar HA, El-Desouky TA (2016) Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121:89–100

    CAS  PubMed  Google Scholar 

  18. 18.

    Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic and Professional, London

    Google Scholar 

  19. 19.

    Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Google Scholar 

  20. 20.

    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  21. 21.

    Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Google Scholar 

  22. 22.

    Altschul SF, Gish W, Miller W, Myers EW, Lipmanl DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  23. 23.

    Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Shukla S, Kakkar P, Nautiyal CS (2016) Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci Rep 6(27575):1–14

    CAS  Google Scholar 

  24. 24.

    Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101(3):11030–11035

    CAS  PubMed  Google Scholar 

  25. 25.

    Singh D, Rathod V, Ninganagouda S, Hiremath J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp Isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014:408021. https://doi.org/10.1155/2014/408021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Winter CA, Risely EA, Nuss GW (1962) Carrageenan induced edema hind paw of the rats as an assay for anti-inflammatory drugs. Proc Soc Expt Bio Med 1:544

    Google Scholar 

  27. 27.

    O’Neill KA, Courtney C, Rankin R, Weissman A (1983) An automated, high-capacity method for measuring jumping latencies on a hotplate. J Pharmacol Methods 10:13–18

    PubMed  Google Scholar 

  28. 28.

    Szelenyi I, Thiemer K (1978) Distention ulcer as a model for testing of drugs for ulcerogenic side effects. Arch Toxicol 41:99–105

    CAS  PubMed  Google Scholar 

  29. 29.

    El-serwy WS, Mohamed NA, Kassem EM, Mahmoud K (2015) Synthesis and evaluation of cytotoxic activities of novel quinazolin derivatives. Int J Res Pharm Sci 6(1):62–74

    CAS  Google Scholar 

  30. 30.

    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(5):55–63

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Abd El Aty AA, Ammar HA (2016) Potential characterization and antimicrobial applications of newly bio-synthesized silver and copper nanoparticles using the novel marine-derived fungus Alternaria tenuissima KM651985. Res J Biotechnol 11(8):71–82

    Google Scholar 

  32. 32.

    Shaheen TI, Abd El Aty AA (2018) In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. Int J Biol Macromol 118:2121–2130

    CAS  PubMed  Google Scholar 

  33. 33.

    Besner S, Kabashin AV, Winnik FM, Meunier M (2008) Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Appl Phys A Mater Sci Process 93(4):955–959

    CAS  Google Scholar 

  34. 34.

    Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5(8):953–959

    CAS  Google Scholar 

  35. 35.

    Nanda A, Majeed S (2014) Improved bactericidal property of silver nanoparticles from Penicillium pinophilum (MTCC 2192) in a combined form with carbicillin and moxifloxacin. Int J Pharm Pharm Sci 6:609–612

    CAS  Google Scholar 

  36. 36.

    Nalamachu MD, Robert Wortmann MD (2014) Role of indomethacin in acute pain and inflammation management: a review of the literature. Postgrad Med 126(4):92–97

    PubMed  Google Scholar 

  37. 37.

    Vane JR, Botting RM (2003) The mechanism of action of aspirin. Thromb Res 110(5–6):255–258

    CAS  PubMed  Google Scholar 

  38. 38.

    Shen TJ (1981) Nonsteroidal anti-inflammatory agents, part III. In: Burger’s Medicinal Chemistry, 4 edn. Wiley, New York, p 125

  39. 39.

    Aparna Mani KM, Seethalakshmi S, Gopa V (2015) Evaluation of in-vitro anti-inflammatory activity of silver nanoparticles synthesised using piper nigrum extract. J Nanomed Nanotechnol 6:268. https://doi.org/10.4172/2157-7439.1000268

    CAS  Article  Google Scholar 

  40. 40.

    Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350. https://doi.org/10.1016/j.biomaterials.2009.08.008

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 5:753–762

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    CAS  PubMed  Google Scholar 

  43. 43.

    Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed 7:3527–3535

    CAS  Google Scholar 

  44. 44.

    Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, Ghasemi Y, Safari A, Hemmateenejad B, Dorostkar S, Sharghi H (2017) Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in enterococcus faecalis using quantitative real-time PCR. Jundishapur J Microbiol 10

  45. 45.

    Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21

    CAS  PubMed  Google Scholar 

  46. 46.

    Neves AR, Lúcio M, Martins S, Lima JL, Reis S (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed 8:177–187

    Google Scholar 

  47. 47.

    Khalandi B, Asadi N, Milani M et al (2017) A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res (Stuttg) 67(2):70–76

    CAS  Google Scholar 

  48. 48.

    Brunner TJ, Wick P, Manser P et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hala A. Ammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.A., El Aty, A.A.A. & El Awdan, S.A. Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications. Bioprocess Biosyst Eng 44, 841–854 (2021). https://doi.org/10.1007/s00449-020-02494-3

Download citation

Keywords

  • AgNPs
  • Anti-inflammatory
  • Cytotoxicity
  • Antimicrobial
  • Yeast