Skip to main content
Log in

Red yeast rice fermentation with Bacillus subtilis B2 under blue light-emitting diodes increases antioxidant secondary products (Manuscript ID: BPBSE-18-0387)

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Light and bacteria can be used in combination to enhance secondary metabolite production during fermentation. Red yeast rice powder (RYRP) was inoculated with Bacillus subtilis (B2) isolated from freshwater seafood and incubated under light-emitting diodes (LEDs) of different colors (blue, green, red, white), fluorescent white light, and in darkness. Blue LED-mediated fermentation with B2 significantly enhanced production of phenolic compounds (68.4 ± 1 mg GAE/g DW) and flavonoids (51.7 ± 1 mg QE/g DW) compared to white light and darkness. Total antioxidant activity of RYRP extract after fermentation with B2 was > 77%; hydroxyl radical and superoxide scavenging were > 66%. DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)) radical scavenging activities were 51% and > 67%, respectively. Reducing power was approximately twice that of extract from RYRP without B2. FTIR analysis showed a high content of hydroxyl, nitrile and carboxylic groups in the extract. Derivatives of cinnamic, benzoic and phophinodithioic acid, and quinazolinone were identified by GC–MS. Findings show that fermenting RYRP with B. subtilis B2 under blue LEDs enhances production of secondary metabolites, which should have applications in industrial fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19:441–448. https://doi.org/10.1016/j.tim.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  2. van der Horst MA, Key J, Hellingwerf KJ (2007) Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too. Trends Microbiol 15:554–562. https://doi.org/10.1016/j.tim.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  3. Davis SJ, Vener AV, Vierstra RD (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286:2517–2520. https://doi.org/10.1126/science.286.5449.2517

    Article  CAS  PubMed  Google Scholar 

  4. Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc B Biol Sci 369:20130243–20130243. https://doi.org/10.1098/rstb.2013.0243

    Article  CAS  Google Scholar 

  5. Margit Olle AV (2013) The effect of light-emitting diode lighting on greenhouse plant growth and quality. Agric Food Sci 22:223–234. https://doi.org/10.1016/j.envexpbot.2009.06.011

    Article  CAS  Google Scholar 

  6. Ma R, Thomas-Hall SR, Chua ET et al (2018) LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresour Technol 252:118–126. https://doi.org/10.1016/j.biortech.2017.12.096

    Article  CAS  PubMed  Google Scholar 

  7. Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb Technol 35:81–86. https://doi.org/10.1016/j.enzmictec.2004.03.016

    Article  CAS  Google Scholar 

  8. Mullineaux CW (2001) How do cyanobacteria sense and respond to light? Mol Microbiol 41:965–971. https://doi.org/10.1046/j.1365-2958.2001.02569.x

    Article  CAS  PubMed  Google Scholar 

  9. Khatoon H, Kok Leong L, Abdu Rahman N et al (2018) Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour Technol 249:652–658. https://doi.org/10.1016/j.biortech.2017.10.052

    Article  CAS  PubMed  Google Scholar 

  10. Oh BT, Jeong SY, Velmurugan P et al (2017) Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J Biosci Bioeng 124:542–550. https://doi.org/10.1016/j.jbiosc.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  11. Gomaa EZ (2016) Cryoprotection of probiotic bacteria with poly-γ-glutamic acid produced by Bacillus subtilis and Bacillus licheniformis. J Genet Eng Biotechnol 14:269–279. https://doi.org/10.1016/j.jgeb.2016.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tian Y, Fan Y, Liu J et al (2016) Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron J Biotechnol 19:41–49. https://doi.org/10.1016/j.ejbt.2015.11.005

    Article  CAS  Google Scholar 

  13. Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochim Biophys Acta Mol Cell Res 1694:299–310. https://doi.org/10.1016/j.bbamcr.2004.02.011

    Article  CAS  Google Scholar 

  14. Hong HA, Le HD, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835. https://doi.org/10.1016/j.femsre.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  15. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  16. Sanjukta S, Rai AK, Muhammed A et al (2015) Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. J Funct Foods 14:650–658. https://doi.org/10.1016/j.jff.2015.02.033

    Article  CAS  Google Scholar 

  17. Juan MY, Chou CC (2010) Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol 27:586–591. https://doi.org/10.1016/j.fm.2009.11.002

    Article  CAS  PubMed  Google Scholar 

  18. Gum S, Nguyen PA, Lee JR et al (2017) The physico-chemical alteration of lovastatin and enhanced antioxidant effect of Bacillus subtilis fermented-red yeast rice product. Food Chem 232:203–209. https://doi.org/10.1016/j.foodchem.2017.04.023

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Wu Y, Wang X et al (2015) Effects of dietary supplementation with red yeast rice on laying performance, egg quality and serum traits of laying hens. Ital J Anim Sci 14:532–537. https://doi.org/10.4081/ijas.2015.4059

    Article  CAS  Google Scholar 

  20. Yin LJ, Lin HH, Jiang ST (2010) Bioproperties of potent nattokinase from Bacillus subtilis YJ1. J Agric Food Chem 58:5737–5742. https://doi.org/10.1021/jf100290h

    Article  CAS  PubMed  Google Scholar 

  21. Tamang JP (2015) Naturally fermented ethnic soybean foods of India. J Ethn Foods 2:8–17. https://doi.org/10.1016/j.jef.2015.02.003

    Article  Google Scholar 

  22. Huang Q, Zhang H, Xue D (2017) Enhancement of antioxidant activity of Radix Puerariae and red yeast rice by mixed fermentation with Monascus purpureus. Food Chem 226:89–94. https://doi.org/10.1016/j.foodchem.2017.01.021

    Article  CAS  PubMed  Google Scholar 

  23. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. https://doi.org/10.1016/j.bej.2013.10.013

    Article  CAS  Google Scholar 

  24. Rajasekar A, Anandkumar B, Maruthamuthu S et al (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85:1175–1188. https://doi.org/10.1007/s00253-009-2289-9

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J, Zheng X, Yang Q et al (2013) Optimization of ultrasonic-assisted extraction and radical-scavenging capacity phenols and flavonoids from Clerodendrum cyrtophyllum Turcz leaves. PLoS One 8:1–8. https://doi.org/10.1371/journal.pone.0068392

    Article  CAS  Google Scholar 

  26. Liu HK, Chen YY, Hu TT et al (2016) The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J Funct Foods 25:459–465. https://doi.org/10.1016/j.jff.2016.06.028

    Article  CAS  Google Scholar 

  27. Zhao L, Zhang X, Cao F et al (2013) Effect of dietary supplementation with fermented Ginkgo-leaves on performance, egg quality, lipid metabolism and egg-yolk fatty acids composition in laying hens. Livest Sci 155:77–85. https://doi.org/10.1016/j.livsci.2013.03.024

    Article  Google Scholar 

  28. Shahidi F, Naczk M (2006) Phenolics in food and nutraceuticals. CRC Press, Washington

    Google Scholar 

  29. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—a review. J Funct Foods 18:820–897. https://doi.org/10.1016/j.jff.2015.06.018

    Article  CAS  Google Scholar 

  30. Alamed J, Chaiyasit W, Mcclements DJ, Decker E (2009) Relationships between free radical scavenging and antioxidant activity in foods. J Agric Food Chem 2969–2976. https://doi.org/10.1021/jf803436c

  31. Kiokias S, Varzakas T, Oreopoulou V (2008) In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit Rev Food Sci Nutr 48:78–93. https://doi.org/10.1080/10408390601079975

    Article  CAS  PubMed  Google Scholar 

  32. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  33. Aniya Y, Yokomakura T, Yonamine M et al (1999) Screening of antioxidant action of various molds and protection of Monascus anka against experimentally induced liver injuries of rats. Gen Pharmacol 32:225–231. https://doi.org/10.1016/S0306-3623(98)00183-9

    Article  CAS  PubMed  Google Scholar 

  34. Kuo C-F, Chyau C-C, Wang T-S et al (2009) Enhanced antioxidant and anti-inflammatory activities of Monascus pilosus fermented products by addition of turmeric to the medium. J Agric Food Chem 57:11397–11405. https://doi.org/10.1021/jf9027798

    Article  CAS  PubMed  Google Scholar 

  35. Jafari E, Khajouei MR, Hassanzadeh F et al (2016) Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci 11:1–14

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea. This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Public Technology Program based on Environmental Policy, funded by Korea Ministry of Environment (MOE) (2018000700001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Cho or Byung-Taek Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elumalai, P., Park, YJ., Cho, M. et al. Red yeast rice fermentation with Bacillus subtilis B2 under blue light-emitting diodes increases antioxidant secondary products (Manuscript ID: BPBSE-18-0387). Bioprocess Biosyst Eng 42, 529–539 (2019). https://doi.org/10.1007/s00449-018-2056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2056-3

Keywords

Navigation