Skip to main content
Log in

Potent biomedical applications of isolated polysaccharides from marine microalgae Tetraselmis species

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae Tetraselmis species were used to evaluate the biological characteristics of water-soluble polysaccharides (WSPs) as one of the significant bioactive substances (BAS) from these photosynthetic microalgae species. Compositional analysis of these BAS shows that they are mainly composed of WSPs along with negligible amount of proteins and lipids. WSPs were partially purified and characterized for their compositional, structural and biological properties such as antioxidant, tyrosinase inhibitory activity and antifungal activies. These WSPs showed the significant antioxidant, antifungal and tyrosinase inhibitory activities, respectively. The outcomes of this study demonstrated that WSPs can be the potent source of biological moieties for further investigations along with specific potent biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

WSP:

Water-soluble polysaccharides

BAS:

Bioactive substances

T1:

KCTC 12236BP

T2:

KCTC 12432BP

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

FRAP:

Ferric reducing antioxidant power

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt TPTZ 2,4,6-tri(2-pyridyl)-s-triazine

TLC:

Thin-layer chromatography

References

  1. Wei L, Huang X, Huang Z (2014) Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chin J Oceanol Limnol 33:99–106. https://doi.org/10.1007/s00343-015-3346-0

    Article  CAS  Google Scholar 

  2. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002

    Article  CAS  Google Scholar 

  3. Hung MT, Liu JC (2006) Microfiltration for separation of green algae from water. Colloids Surf B Biointerfaces 51:157–164. https://doi.org/10.1016/j.colsurfb.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  4. Huntley ME, Johnson ZI, Brown SL et al (2015) Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res 10:249–265. https://doi.org/10.1016/j.algal.2015.04.016

    Article  Google Scholar 

  5. Balen RE, Geraldo E, Luz Marques AEM et al (2015) Effect of defatted microalgae(Scenedesmus obliquus) biomass inclusion on growth performance of Rhamdia quelen (Quoy & Gaimard, 1824). J Appl Ichthyol 31:98–101. https://doi.org/10.1111/jai.12969

    Article  Google Scholar 

  6. Arad S, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364. https://doi.org/10.1016/j.copbio.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  7. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228. https://doi.org/10.1152/physrev.00044.2003

    Article  CAS  PubMed  Google Scholar 

  8. Hasegawa K, Fujiwara R, Sato K et al (2015) Possible involvement of keratinocyte growth factor in the persistence of hyperpigmentation in both human facial solar lentigines and melasma. Ann Dermatol 27:626–629. https://doi.org/10.5021/ad.2015.27.5.626

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sasaki M, Kondo M, Sato K et al (2014) Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Pigment Cell Melanoma Res 27:754–763. https://doi.org/10.1111/pcmr.12269

    Article  CAS  PubMed  Google Scholar 

  10. Lee SY, Baek N, Nam T (2015) Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem 00:1–13. https://doi.org/10.3109/14756366.2015.1004058

    Article  CAS  Google Scholar 

  11. DuBois M, Gilles KA, Hamilton JK, Rebers PA and FS (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017 doi

    Article  CAS  Google Scholar 

  12. Hospital J (1944) METHOD NELSON for Medical. J Biol Chem 03:375–380

    Google Scholar 

  13. Geun Goo B, Baek G, Jin Choi D et al (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350. https://doi.org/10.1016/j.biortech.2012.11.077

    Article  CAS  Google Scholar 

  14. Lee CG, Lee J, Lee DG et al (2016) Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata. Int J Biol Macromol 85:505–513. https://doi.org/10.1016/j.ijbiomac.2016.01.027

    Article  CAS  PubMed  Google Scholar 

  15. Bouzidi A, Benzarti A, Arem AE, Mahfoudhi A, Hammami S, Gorcii M, Mastouri M, Hellal AN, Zine M (2016) Chemical composition, antioxidant and antimicrobial effects of Tunisian Limoniastrum guyonianum Durieu ex Boiss extracts. Pak J Pharm Sci 4:1299–305

    Google Scholar 

  16. Hajimahmoodi M, Faramarzi MA, Mohammadi N et al (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50. https://doi.org/10.1007/s10811-009-9424-y

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  18. Pérez-Palacios T, Ruiz J, Martín D et al (2008) Comparison of different methods for total lipid quantification in meat and meat products. Food Chem 110:1025–1029. https://doi.org/10.1016/j.foodchem.2008.03.026

    Article  CAS  PubMed  Google Scholar 

  19. Pourali A, Afrouziyeh M, Moghaddaszadeh-ahrabi S (2014) Extraction of phenolic composition and quantification of the total phenolic of pomegranate pomace. Eur J Exp Biol 4:174–176

    CAS  Google Scholar 

  20. Pomerantz SH (1966) The tyrosine hydroxylase activity of mammalian tyrosinase. J Biol Chem 241:161–168

    CAS  Google Scholar 

  21. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  22. Yu D, Pu W, Li D et al (2016) Phenolic compounds and antioxidant activity of different organs of Potentilla fruticosa L. from two main production areas of China. Chem Biodivers 13:1140–1148. https://doi.org/10.1002/cbdv.201500512

    Article  CAS  PubMed  Google Scholar 

  23. Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465. https://doi.org/10.3390/md8092435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dewapriya P, Kim S (2014) Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods. Food Res Int 56:115–125. https://doi.org/10.1016/j.foodres.2013.12.022

    Article  CAS  Google Scholar 

  25. Chen W, Zhang C, Song L et al (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47. https://doi.org/10.1016/j.mimet.2009.01.001

    Article  CAS  Google Scholar 

  26. Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127. https://doi.org/10.1016/j.biortech.2011.07.046

    Article  CAS  Google Scholar 

  27. Bai MD, Cheng CH, Wan HM, Lin YH (2011) Microalgal pigments potential as byproducts in lipid production. J Taiwan Inst Chem Eng 42:783–786. https://doi.org/10.1016/j.jtice.2011.02.003

    Article  CAS  Google Scholar 

  28. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  29. Macías AE, Ponce-De-León S (2005) Infection control: Old problems and new challenges. Arch Med Res 36:637–645. https://doi.org/10.1016/j.arcmed.2005.05.004

    Article  PubMed  Google Scholar 

  30. SB W, Mori M, MA P et al (1988) Hospital-acquired candidemia: The attributable mortality and excess length of stay. Arch Intern Med 148:2642–2645

    Article  Google Scholar 

  31. Ghannoum MA, Rice LB (1999) Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517. https://doi.org/10.1.1.322.6182

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kweon Park.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amna Kashif, S., Hwang, Y.J. & Park, J.K. Potent biomedical applications of isolated polysaccharides from marine microalgae Tetraselmis species. Bioprocess Biosyst Eng 41, 1611–1620 (2018). https://doi.org/10.1007/s00449-018-1987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1987-z

Keywords

Navigation