Skip to main content
Log in

Modeling and dynamic simulation of a two-stage pre-denitrification MBBR system under increasing organic loading rates

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biofilm-based wastewater treatment systems have become attractive due to their numerous advantages when compared to other suspended growth processes. However, the mathematical modeling of these reactors is relatively complex, since it has to consider a wide range of phenomena to accurately describe the process behavior. This work deals with the modeling of a two-stage MBBR system run in pre-denitrification mode for the removal of organic matter and nitrogen from wastewater. The model development took into account diffusive phenomena and kinetics in a homogeneous biofilm composed of different bacterial functional groups (namely heterotrophs and nitrifiers). The thickness of the biofilm was treated as a variable, given that detachment of adhered biomass took place. The suspended biomass fraction was also considered to remove the pollutants by means of Monod-type kinetics associated with the activated sludge model. The dynamic behavior of the components involved in the system and their spatial distribution in the biofilm obtained from simulated data showed good agreement with those reported in the literature, demonstrating the reproducibility of the model and encouraging future applications in full-scale MBBR plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Biofilm surface area (L2)

b :

Decay rate (T−1)

S :

Soluble substrate concentration (M L−3)

C m :

Saturating concentration of oxygen in the liquid phase (M L−3)

D :

Diffusion coefficient (L2 T−1)

f :

Biomass fraction in the biofilm

f p :

Fraction of the inert biomass in the inactive portion of the biofilm

i xb :

N/COD mass ratio

k :

External mass transfer coefficient (L2 T−1)

K :

Half-saturation coefficient (M L−3)

k L a :

Oxygen mass transfer coefficient (T−1)

L :

Biofilm thickness (L)

m :

Mass of biomass (M)

MMi :

Molecular weight (M N−1)

P :

Pressure (M L−1 T−2)

Q :

Flowrate (L3 T−1)

r :

Conversion rate (M L−3 T−1)

R :

Universal constant of gases (M L2 T−2 Θ−1 N−1)

t :

Time (T)

T :

Temperature (θ)

V :

Reactor volume (L3)

X :

Biomass concentration (M L−3)

x :

Molar fraction

Y :

Yield coefficient

z :

Spatial variable in the biofilm (L)

δ :

Boundary layer thickness (L)

λ :

Shear loss rate (T−1)

μ :

Maximum specific rate (T−1)

ν :

Stoichiometric coefficient

ρ M :

Biofilm mean density (M L−3)

ρ :

Process rate (M L−3)

1:

Anoxic reactor

2:

Aerobic reactor

a :

Anoxic process

f :

Anaerobic process

h :

Hydrolysis process

o :

Aerobic process

A :

Autotrophic biomass

H :

Heterotrophic biomass

I :

Inert biomass

NH:

Ammonia

NO:

Nitrate nitrogen

O2 :

Oxygen

S :

Readily or slowly biodegradable substrate

air:

Feed air

in:

Influent stream

eq:

Equilibrium condition

i :

Component (soluble or biomass)

j :

Process

B :

Biofilm phase

G :

Gas phase

I :

Interface biofilm-bulk

L :

Bulk phase

References

  1. Wang RC, Wen XH, Qian Y (2005) Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochem 40:2992–3001

    Article  CAS  Google Scholar 

  2. Luostarinen S, Luste S, Valentín L, Rintala J (2006) Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperature. Water Res 40:1607–1615

    Article  CAS  PubMed  Google Scholar 

  3. Trapani DD, Mannina G, Torregrossa M, Viviani G (2010) Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor. Water Sci Technol 61:1757–1766

    Article  PubMed  Google Scholar 

  4. Ferrai M, Guglielmi G, Andreottola G (2010) Modelling respirometric tests for the assessment of kinetic and stoichiometric parameters on MBBR biofilm for municipal wastewater treatment. Environ Modell Softw 25:626–632

    Article  Google Scholar 

  5. Calderón K, Martín-Pascual J, Poyatos JM, Rodelas B, González-Martínez A, González-López J (2012) Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions. Bioresour Technol 121:119–126

    Article  PubMed  Google Scholar 

  6. Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult Eng 34:322–331

    Article  Google Scholar 

  7. Ødegaard H (2006) Innovations in wastewater treatment: the moving bed biofilm process. Water Sci Technol 53:17–33

    Article  PubMed  Google Scholar 

  8. Bassin JP (2012) Biological nutrient removal in compact biofilm systems. PhD Thesis, Delft University of Technology

  9. Villaverde S, Lacalle ML, García-Encina PA, Fdz-Polanco F (2001) Nitrification-denitrification of UASB effluents highly loaded with nitrogen in an activated sludge reactor operated with short cycled aeration. Water Sci Technol 44:279–286

    Article  CAS  PubMed  Google Scholar 

  10. Rusten B, Hem LJ, Ødegaard H (1995) Nitrogen removal from dilute wastewater in cold climate using moving-bed biofilm reactors. Water Environ Res 67:65–74

    Article  CAS  Google Scholar 

  11. Sin G, Weijma J, Spanjers H, Nopens I (2008) Dynamic model development and validation for a nitrifying moving bed biofilter: effect of temperature and influent load on the performance. Process Biochem 43:384–397

    Article  CAS  Google Scholar 

  12. Horn H, Lackner S (2014) Modeling of biofilm systems: a review, in productive biofilms. Biochem Eng Biotechnol 146:53–76

    Google Scholar 

  13. Leyva-Díaz JC, Calderón K, Rodríguez FA, González-López J, Hontoria E, Poyatos JM (2013) Comparative kinetic study between moving bed biofilm reactor-membrane bioreactor and membrane bioreactor systems and their influence on organic matter and nutrients removal. Biochem Eng J 77:28–40

    Article  Google Scholar 

  14. Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33:230–238

    Article  CAS  Google Scholar 

  15. Mannina G, Di Trapani D, Viviani G, Ødegaard H (2011) Modelling and dynamic simulation of hybrid moving bed biofilm reactors: model concepts and application to a pilot plant. Biochem Eng J 56:23–36

    Article  CAS  Google Scholar 

  16. Plattes M, Henry E, Schosseler PM, Weidenhaupt A (2006) Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochem Eng J 32:61–68

    Article  CAS  Google Scholar 

  17. Lin YH (2008) Kinetics of nitrogen and carbon removal in a moving-fixed bed biofilm reactor. Appl Math Model 32:2360–2377

    Article  Google Scholar 

  18. Lima PS, Dezotti M, Bassin JP (2016) Interpreting the effect of increasing COD loading rates on the performance of a pre-anoxic MBBR system: implications on the attached and suspended biomass dynamics and nitrification-denitrification activity. Bioprocess Biosyst Eng 39:945–957

    Article  CAS  PubMed  Google Scholar 

  19. Longhi LGS, Luvizetto DJ, Ferreira LSF, Rech R, Ayub MAZ, Secchi AR (2004) A growth kinetic model of Kluyveromyces marxianus cultures on cheese whey as substrate. J Ind Microbiol Biot 31:35–40

    Article  CAS  Google Scholar 

  20. Perry RH, Chilton CH (1980) Chemical engineers’ handbook, 5th edn. McGraw-Hill, New York

    Google Scholar 

  21. Gapes DJ, Keller J (2009) Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. Process Biochem 44:43–53

    Article  CAS  Google Scholar 

  22. Nogueira BL, Pérez J, Van Loosdrecht MCM, Secchi AR, Dezotti M, Biscaia EC Jr (2005) Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment. Water Res 80:90–98

    Article  Google Scholar 

  23. Wik T (2009) On modeling the dynamics of fixed biofilm reactors with focus on nitrifying trickling filters. PhD Thesis, Chalmers University of Technology

  24. Xavier JB, Picioreanu C, Van Loosdrecht MCM (2005) A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 6:651–669

    Article  Google Scholar 

  25. Picioreanu C, Kreft JU, Van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pérez J, Picioreanu C, Van Loosdrecht MCM (2005) Modeling biofilm and floc diffusion processes based on analytical solution of reaction-diffusion equations. Water Res 39:1311–1323

    Article  PubMed  Google Scholar 

  27. Eberl HJ, Morgenroth E, Noguera D, Picioreanu C, Rottmann B, Van Loosdrecht MCM, Wanner O (2006) Mathematical modeling of biofilms, IWA scientific and technical report no.18. IWA Publishing, London

    Google Scholar 

  28. Henze M, Gujer W, Mino T, Van Loosdrecht MCM (2000) Activated sludge models ASM1, ASM2, ASM2d, e ASM3, scientific and technical report no. 9. IWA Publishing, London

    Google Scholar 

  29. Petersen B (2000) Calibration, identifiability and optimal experimental design of activated sludge models. PhD Thesis, Gent University

  30. Abu-Alhail S, Lu XW (2014) Experimental investigation and modeling of innovative five-tank anaerobic-anoxic/oxic process. Appl Math Model 38:278–290

    Article  Google Scholar 

  31. Green D, Perry RH (1997) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  32. Vangsgaard AK (2013) Modeling, experimentation and control of autotrophic nitrogen removal in granular sludge systems. PhD Thesis, Technical University of Denmark

  33. Henze M, Van Loosdrecht MCM, Ekama GA, Brdjanivic D (2008) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London

    Google Scholar 

  34. Secchi AR, Cardozo NSM, Neto EA, Finkler TF (2006) An Algorithm for automatic selection and estimation of model parameters, proceedings of the international symposium on advanced control of chemical processes, vol 2. Gramado, Brazil, pp 789–794

    Article  Google Scholar 

  35. Villadsen J, Michelsen ML (1978) Solution of differential equation models by polynomial approximation. Prentice-Hall, New Jersey

    Google Scholar 

  36. Soares RP, Secchi AR (2003) EMSO: a new environment for modelling, simulation and optimization. Comput Aided Chem Eng 14:947–952

    Article  Google Scholar 

  37. Davis ME (1984) Numerical methods and modeling for chemical engineers. Wiley, New York

    Google Scholar 

  38. Antoniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, Svoronos SA (1990) Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res 24:97–101

    Article  CAS  Google Scholar 

  39. Plattes M, Fiorelli D, Gillé S, Girard C, Henry E, Minette F, O’Nagy O, Schosseler PM (2007) Modelling and dynamic simulation of a moving bed bioreactor using respirometry for the estimation of kinetic parameters. Biochem Eng J 33:253–259

    Article  CAS  Google Scholar 

  40. Zafarzadeh A, Bina B, Nikaeen M, Attar HM, Khiadani MH (2011) Effect of dissolved oxygen and chemical oxygen demand to nitrogen ratios on the partial nitrification/denitrification process in moving bed biofilm reactors. Iran J Biotechnol 9:197–205

    CAS  Google Scholar 

  41. Cao SMS, Fontoura GAT, Dezotti M, Bassin JP (2016) Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system. Environ Technol 37:96–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Bassin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carminati, H.B., Lima, P.S., Secchi, A.R. et al. Modeling and dynamic simulation of a two-stage pre-denitrification MBBR system under increasing organic loading rates. Bioprocess Biosyst Eng 41, 1573–1587 (2018). https://doi.org/10.1007/s00449-018-1984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1984-2

Keywords

Navigation