Skip to main content
Log in

Treatment of thermophilic hydrolysis reactor effluent with ceramic microfiltration membranes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

For an undisturbed operation of two-stage high-pressure fermentation up to 100 bar, a particle-free hydrolysate appears to be necessary. This is even more important if the second stage, i.e., the methane reactor, is designed as fixed bed. Here, we present the potential of microfiltration membranes as separation unit after the first stage, which is the hydrolysis. The study included the selection of membrane material, membrane performance investigations, and long-term-behavior during the filtration period. In a series of experiments, the optimum type of membrane material and the mode of operation [either crossflow (CF) or submerged (S)] were determined. Ceramic membranes proved to be the better option to treat the process stream due to their chemical and temperature resistance. The crossflow filtration achieved a sustainable flux of up to 33 L/(m2 h), while long-term experiments with the submerged membranes confirmed a critical flux of 7 L/(m2 h). Comparative analyses of hydrolysate and permeate showed that the rejected chemical oxygen demand (COD) as well as total organic carbon (TOC) fraction and thereby the loss of organic carbon in the permeate does not reduce the methane yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindner J, Zielonka S, Oechsner H, Lemmer A (2016) Is the continuous two-stage anaerobic digestion process well suited for all substrates? Biores Technol 200:470–476. https://doi.org/10.1016/j.biortech.2015.10.052

    Article  CAS  Google Scholar 

  2. Zielonka S, Lemmer A, Oechsner H, Jungbluth T (2010) Energy balance of a two-phase anaerobic digestion process for energy crops. Eng Life Sci 10(6):515–519. https://doi.org/10.1002/elsc.201000071

    Article  CAS  Google Scholar 

  3. Lemmer A, Chen Y, Lindner J, Wonneberger AM, Zielonka S, Oechsner H, Jungbluth T (2015) Influence of different substrates on the performance of a two-stage high pressure anaerobic digestion system. Biores Technol 178:313–318. https://doi.org/10.1016/j.biortech.2014.09.118

    Article  CAS  Google Scholar 

  4. Merkle W, Baer K, Haag NL, Zielonka S, Ortloff F, Graf F, Lemmer A (2017) High-pressure anaerobic digestion up to 100 bar: influence of initial pressure on production kinetics and specific methane yields. Environ Technol 38(3):337–344. https://doi.org/10.1080/09593330.2016.1192691

    Article  CAS  PubMed  Google Scholar 

  5. Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A (2017) Influence of pressures up to 50 bar on two-stage anaerobic digestion. Biores Technol 232:72–78. https://doi.org/10.1016/j.biortech.2017.02.013

    Article  CAS  Google Scholar 

  6. Abeynayaka A, Visvanathan C (2011) Performance comparison of mesophilic and thermophilic aerobic sidestream membrane bioreactors treating high strength wastewater. Biores Technol 102(9):5345–5352. https://doi.org/10.1016/j.biortech.2010.11.079

    Article  CAS  Google Scholar 

  7. Duncan J, Bokhary A, Fatehi P, Kong F, Lin H, Liao B (2017) Thermophilic membrane bioreactors: A review. Biores Technol 243:1180–1193. https://doi.org/10.1016/j.biortech.2017.07.059

    Article  CAS  Google Scholar 

  8. Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Biores Technol 102(22):10377–10385. https://doi.org/10.1016/j.biortech.2011.09.012

    Article  CAS  Google Scholar 

  9. van Lier JB, Hulsbeek J, Stams AJM, Lettinga G (1993) Temperature susceptibility of thermophilic methanogenic sludge: Implications for reactor start-up and operation. Biores Technol 43(3):227–235. https://doi.org/10.1016/0960-8524(93)90035-A

    Article  Google Scholar 

  10. Van Lier JB, Martin JLS, Lettinga G (1996) Effect of temperature on the anaerobic thermophilic conversion of volatile fatty acids by dispersed and granular sludge. Water Res 30(1):199–207. https://doi.org/10.1016/0043-1354(95)00107-V

    Article  Google Scholar 

  11. Lee S-m, Jung J-y, Chung Y-c (2001) Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Res 35(2):471–477. https://doi.org/10.1016/S0043-1354(00)00255-4

    Article  CAS  PubMed  Google Scholar 

  12. Jeison D, van Lier JB (2007) Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: Factors affecting long-term operational flux. Water Res 41(17):3868–3879. https://doi.org/10.1016/j.watres.2007.06.013

    Article  CAS  PubMed  Google Scholar 

  13. Jeison D, van Lier JB (2008) Feasibility of thermophilic anaerobic submerged membrane bioreactors (AnSMBR) for wastewater treatment. Desalination 231(1–3):227–235. https://doi.org/10.1016/j.desal.2007.11.048

    Article  CAS  Google Scholar 

  14. Jeison D, Telkamp P, van Lier JB (2009) Thermophilic sidestream anaerobic membrane bioreactors: the shear rate dilemma. Water Environ Res 81(11):2372–2380. https://doi.org/10.2175/106143009X426040

    Article  CAS  PubMed  Google Scholar 

  15. Qiao W, Takayanagi K, Niu Q, Shofie M, Li YY (2013) Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas. Biores Technol 149:92–102. https://doi.org/10.1016/j.biortech.2013.09.023

    Article  CAS  Google Scholar 

  16. Qiao W, Takayanagi K, Shofie M, Niu Q, Yu HQ, Li Y-Y (2013) Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Biores Technol 150:249–258. https://doi.org/10.1016/j.biortech.2013.10.002

    Article  CAS  Google Scholar 

  17. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Biores Technol 102(9):5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081

    Article  CAS  Google Scholar 

  18. Mota VT, Santos FS, Amaral MCS (2013) Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: Assessment on biological activity and filtration performance. Biores Technol 146:494–503. https://doi.org/10.1016/j.biortech.2013.07.110

    Article  CAS  Google Scholar 

  19. Chaikasem S, Jacob P, Visvanathan C (2015) Performance improvement in a two-stage thermophilic anaerobic membrane bioreactor using PVA-gel as biocarrier. Desalin Water Treatm 53(10):2839–2849. https://doi.org/10.1080/19443994.2014.931531

    Article  CAS  Google Scholar 

  20. Lindner J, Zielonka S, Oechsner H, Lemmer A (2015) Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates. Environ Technol 36(2):198–207. https://doi.org/10.1080/09593330.2014.941944

    Article  CAS  PubMed  Google Scholar 

  21. Wu D, Howell JA, Field RW (1999) Critical flux measurement for model colloids. J Membr Sci 152(1):89–98. https://doi.org/10.1016/S0376-7388(98)00200-2

    Article  CAS  Google Scholar 

  22. Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Membr Sci 100(3):259–272. https://doi.org/10.1016/0376-7388(94)00265-Z

    Article  CAS  Google Scholar 

  23. Le-Clech P, Jefferson B, Chang IS, Judd SJ (2003) Critical flux determination by the flux-step method in a submerged membrane bioreactor. J Membr Sci 227(1–2):81–93. https://doi.org/10.1016/j.memsci.2003.07.021

    Article  CAS  Google Scholar 

  24. Bacchin P, Aimar P, Field RW (2006) Critical and sustainable fluxes: theory, experiments and applications. J Membr Sci 281(1):42–69. https://doi.org/10.1016/j.memsci.2006.04.014

    Article  CAS  Google Scholar 

  25. Wu J, Le-Clech P, Stuetz RM, Fane AG, Chen V (2008) Novel filtration mode for fouling limitation in membrane bioreactors. Water Res 42(14):3677–3684. https://doi.org/10.1016/j.watres.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Meng F, Zhang H, Yang F, Liu L (2007) Characterization of Cake Layer in Submerged Membrane Bioreactor. Environ Sci Technol 41(11):4065–4070. https://doi.org/10.1021/es062208b

    Article  CAS  PubMed  Google Scholar 

  27. Meng F, Shi B, Yang F, Zhang H (2007) New insights into membrane fouling in submerged membrane bioreactor based on rheology and hydrodynamics concepts. J Membr Sci 302(1–2):87–94. https://doi.org/10.1016/j.memsci.2007.06.030

    Article  CAS  Google Scholar 

  28. VDI Society Energy and Environment (2016) VDI 4630:2016-11: Fermentation of organic materials - Characterization of the substrate, sampling, collection of material data, fermentation tests

  29. Lin HJ, Xie K, Mahendran B, Bagley DM, Leung KT, Liss SN, Liao BQ (2009) Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Res 43(15):3827–3837. https://doi.org/10.1016/j.watres.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  30. Visvanathan C, Choudhary MK, Montalbo MT, Jegatheesan V (2007) Landfill leachate treatment using thermophilic membrane bioreactor. Desalination 204(1):8–16. https://doi.org/10.1016/j.desal.2006.02.028

    Article  CAS  Google Scholar 

  31. Bär K, Merkle W, Tuczinski M, Saravia F, Horn H, Ortloff F, Graf F, Lemmer A, Kolb T (2018) Development of an innovative two-stage fermentation process for high-calorific biogas at elevated pressure. Biomass Bioenerg 115:186–194. https://doi.org/10.1016/j.biombioe.2018.04.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Ministry for Education and Research (BMBF), funding code 03EK3526B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Tuczinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuczinski, M., Saravia, F. & Horn, H. Treatment of thermophilic hydrolysis reactor effluent with ceramic microfiltration membranes. Bioprocess Biosyst Eng 41, 1561–1571 (2018). https://doi.org/10.1007/s00449-018-1983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1983-3

Keywords

Navigation