Skip to main content
Log in

The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1,3-propanediol from crude glycerol by microbial consortium

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) as “green” solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol as a by-product in biodiesel production is an ideal feedstock for the microbial production of 1,3-propanediol (PDO), which is a versatile bulk chemical. PDO can be produced by microbial consortium with the advantages of high substrate tolerance and narrow by-product profile. In the present study, the effect of IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][TfO]) was evaluated on the capacity of PDO production from crude glycerol by microbial consortium DL38-BH. In the batch fermentation at 60 g/L crude glycerol and 10 g/L [Emim][TfO], the concentration and yield of PDO from glycerol increased from 23.14 g/L and 0.45 mol/mol to 31.17 g/L and 0.60 mol/mol, respectively. Our results showed that [Emim][TfO] decreased the ratio of intracellular NADH to NAD+ and increased the concentration of 3-HPA during batch fermentation. The activities of three key enzymes in glycerol metabolism were stimulated by [Emim][TfO] during the batch fermentation by microbial consortium DL38-BH. Compared to the control, the proportion of Klebsiella genus which could convert glycerol to PDO increased significantly from 79.19% to 89.49% and the other genera that did not produce PDO were dramatically decreased (P < 0.05) at the end of batch fermentation. This work demonstrated that [Emim][TfO] significantly improved the concentration and yield of PDO from crude glycerol by adjusting microbial community during batch fermentation by microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li C, Lesnik KL, Liu H (2013) Microbial conversion of waste glycerol from biodiesel production into value-added products. Energies 6:4739–4768

    Article  CAS  Google Scholar 

  2. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226

    Article  CAS  Google Scholar 

  3. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuels 5:1

    Article  CAS  Google Scholar 

  4. Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5:1137–1148

    Article  CAS  PubMed  Google Scholar 

  5. Lee CS, Aroua MK, Daud WMAW., Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew Sustain Energy Rev 42:963–972

    Article  CAS  Google Scholar 

  6. Liu HJ, Zhang DJ, Xu YH, Mu Y, Sun YQ, Xiu ZL (2007) Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale. Biotechnol Lett 29:1281–1285

    Article  CAS  PubMed  Google Scholar 

  7. Sun YQ, Qi WT, Teng H, Xiu ZL, Zeng AP (2008) Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning both enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem Eng J 38:22–32

    Article  CAS  Google Scholar 

  8. Alivisatos AP, Blaser MJ, Brodie EL, Chun M, Dangl JL, Donohue TJ, Dorrestein PC, Gilbert JA, Green JL, Jansson JK, Knight R, Maxon ME, McFall-Ngai MJ, Miller JF, Pollard KS, Ruby EG, Taha SA (2015) A unified initiative to harness Earth’s microbiomes. Science 350(6260):507–508

    Article  CAS  PubMed  Google Scholar 

  9. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    Article  CAS  PubMed  Google Scholar 

  10. Dubilier N, McFall-Ngai M, Zhao LP (2015) Great a global microbiome effort. Nature 526(7575):631–634

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh PK, Philip L (2004) Atrazine degradation in anaerobic environment by a mixed microbial consortium. Water Res 38:2276–2283

    Article  CAS  PubMed  Google Scholar 

  12. Jiang LL, Zhou JJ, Xiu ZL (2017) Advances in industrial microbiome based on microbial consortium for biorefinery. Bioresour Bioprocess 4(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212

    Article  CAS  PubMed  Google Scholar 

  14. Navarrete-Bolaños JL (2012) Improving traditional fermented beverages: how to evolve from spontaneous to directed fermentation. Eng Life Sci 12:410–418

    Article  CAS  Google Scholar 

  15. Sabra W, Dietz D, Tjahjasari D, Zeng AP (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10:407–421

    Article  CAS  Google Scholar 

  16. Dietz D, Zeng AP (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37:225–233

    Article  CAS  PubMed  Google Scholar 

  17. Jiang LL, Liu HF, Mu Y, Sun YQ, Xiu ZL (2017) High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge. Eng Life Sci 17:635–644

    Article  CAS  Google Scholar 

  18. Liu B, Christiansen K, Parnas R, Xu Z, Li B (2013) Optimizing the production of hydrogen and 1,3-propanediol in anaerobic fermentation of biodiesel glycerol. Int J Hydrogen Energy 38:3196–3205

    Article  CAS  Google Scholar 

  19. Moscoviz R, Trably E, Bernet N (2016) Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotechnol Biofuels 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varrone C, Heggeset TM, Le SB, Haugen T, Markussen S, Skiadas IV, Gavala HN (2015) Comparison of different strategies for selection/adaptation of mixed microbial cultures able to ferment crude glycerol derived from second-generation biodiesel. Biomed Res Int 2015:1–14

    Article  CAS  Google Scholar 

  21. Zhou JJ, Shen JT, Jiang LL, Sun YQ, Mu Y, Xiu ZL (2017) Selection and characterization of an anaerobic microbial consortium with high adaptation to crude glycerol for 1,3-propanediol production. Appl Microbiol Biotechnol 101:5985–5996

    Article  CAS  PubMed  Google Scholar 

  22. Zeng AP, Ross A, Biebl H, Tag C, Günzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  PubMed  Google Scholar 

  23. Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350(6261):663–666

    Article  CAS  PubMed  Google Scholar 

  24. Guillermo Q, Annabelle C, Abdeltif A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930

    Article  CAS  Google Scholar 

  25. Kaftzik N, Wasserscheid P, Kragl U (2002) Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine. Org Process Res Dev 6:553–557

    Article  CAS  Google Scholar 

  26. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37:19–28

    Article  CAS  Google Scholar 

  27. Seddon KR (1997) Ionic liquids for clean technology. Chem Biotechnol 2:351–356

    Article  Google Scholar 

  28. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Soc Chem Commun 13:965–966

    Article  Google Scholar 

  29. Müller A, Górak A (2012) Extraction of 1,3-propanediol from aqueous solutions using different ionic liquid-based aqueous two-phase systems. Sep Purif Technol 97:130–136

    Article  CAS  Google Scholar 

  30. Müller A, Schulz R, Wittmann J, Kaplanow I, Górak A (2013) Investigation of a phosphate/1-butyl-3-methylimidazolium trifluoromethanesulfonate/water system for the extraction of 1,3-propanediol from fermentation broth. RSC Adv 3:148–156

    Article  Google Scholar 

  31. Ha SH, Lan MN, Lee SH, Hwang SM, Koo YM (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480–483

    Article  CAS  Google Scholar 

  32. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure–stability relationship of Candida antarctica lipase B in ionic liquids. Biomacromolecules 6:1457–1464

    Article  CAS  PubMed  Google Scholar 

  33. Lozano P, García-Verdugo E, Piamtongkam R, Karbass N, De Diego T, Burguete MI, Luis V, Iborra SL J (2007) Bioreactors based on monolith-supported ionic liquid phase for enzyme catalysis in supercritical carbon dioxide. Adv Synth Catal 349:1077–1084

    Article  CAS  Google Scholar 

  34. Zhang L, Xian M, He Y, Li L, Yang J, Yu S, Xu X (2009) A BrÖsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour Technol 100:4368–4373

    Article  CAS  PubMed  Google Scholar 

  35. Ghiaci M, Aghabarari B, Habibollahi S, Gil A (2011) Highly efficient BrÖsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils. Bioresour Technol 102:1200–1204

    Article  CAS  PubMed  Google Scholar 

  36. Han MH, Yi WL, Wu Q, Liu Y, Hong YC, Wang DZ (2009) Preparation of biodiesel from waste oils catalyzed by a BrÖnsted acidic ionic liquid. Bioresour Technol 100:2308–2310

    Article  CAS  PubMed  Google Scholar 

  37. Noriho K, Yuichi M, Misa H, Kazunori N, Mamiko N, Masahiro G, Haruo T (2008) Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media. Biotechnol Lett 30:1037–1040

    Article  CAS  Google Scholar 

  38. Lindsay EF, Héctor R, Joan FB (2008) Heat capacities and excess enthalpies of 1-ethyl-3-methylimidazolium-based ionic liquids and water. J Chem Eng Data 53:2112–2119

    Article  CAS  Google Scholar 

  39. Wang XT, Yue DM, Zong MH, Lou WY (2013) Use of ionic liquid to significantly improve asymmetric reduction of ethyl acetoacetate catalyzed by Acetobacter sp. CCTCC M209061 cells. Ind Eng Chem Res 52(35):12550–12558

    Article  CAS  Google Scholar 

  40. Wang YH, Teng H, Xiu ZL (2011) Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. J Ind Microbiol Biotechnol 38:705–715

    Article  CAS  PubMed  Google Scholar 

  41. Lowery HO, Rosebrough J, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  42. Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A (1997) Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations. Microbiology 143:2423–2432

    Article  CAS  PubMed  Google Scholar 

  43. Wang JF, Xiu ZL, Fan SD (2001) Determination of glycerol concentration during the fermentation of glycerol to 1,3-propanediol. Ind Microbiol 31:33–35 (Chinese)

    Google Scholar 

  44. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52(3):289–297

    Article  CAS  PubMed  Google Scholar 

  45. Du C, Zhang Y, Li Y, Cao Z (2007) Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability. Appl Environ Microbiol 73:4515–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo P, Zhu L, Wang J, Wang J, Liu T (2015) Effects of alkyl-imidazolium ionic liquid [Omim]Cl on the functional diversity of soil microbial communities. Environ Sci Pollut Res 22:9059–9066

    Article  CAS  Google Scholar 

  47. Song XL, Ye SY, Xie R, Yin L, Shi X, Luo SC (2011) Effects of bmim[PF6] treatments with different concentrations on microbial activity of Saccharomyces cerevisiae. Korean J Chem Eng 28(9):1902–1907

    Article  CAS  Google Scholar 

  48. Forage RG, Lin ECC (1982) Dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang QR, Teng H, Sun YQ, Xiu ZL, Zeng AP (2008) Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae. Bioprocess Biosyst Eng 31:127–135

    Article  CAS  PubMed  Google Scholar 

  50. Zhang QR, Xiu ZL (2009) Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system. Biotechnol Prog 25:103–115

    Article  PubMed  Google Scholar 

  51. Deive FJ, Rodríguez A, Varela A, Rodrígues C, Leitão MC, Houbraken JAMP., Pereiro AB, Longo MA, Sanromán M, Samson RA, Rebelo LPN, Silva Pereira C (2011) Impact of ionic liquids on extreme microbial biotypes from soil. Green Chem 13:687

    Article  CAS  Google Scholar 

  52. Pernak J, Sobaszkiewicz K, Mirska I (2003) Anti-microbial activities of ionic liquids. Green Chem 5:52–56

    Article  CAS  Google Scholar 

  53. Sun X, Zhu LS, Wang JH, Wang J, Sub BY, Liu T, Zhang C, Gao C, Shao YT (2017) Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity. Ecotoxicol Environ Saf 135:201–208

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Song M, Wang Y, Gao C, Zhang Q, Chu X, Fang H, Yu Y (2012) Response of soil bacterial community to repeated applications of carbendazim. Ecotoxicol Environ Saf 75:33–39

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Q, Zhu L, Wang J, Xie H, Wang J, Wang F, Sun F (2014) Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environ Monit Assess 186:2801–2812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 21476042) and the Fundamental Research Funds for Central Universities (DUT17ZD209). Thanks to Yan Xing for modifying the grammars in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Xiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Dai, J., Sun, Y. et al. The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1,3-propanediol from crude glycerol by microbial consortium. Bioprocess Biosyst Eng 41, 1079–1088 (2018). https://doi.org/10.1007/s00449-018-1937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1937-9

Keywords

Navigation