Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 6, pp 871–883 | Cite as

Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons

  • Xiaohui Zhao
  • Fuqiang Fan
  • Huaidong Zhou
  • Panwei Zhang
  • Gaofeng Zhao
Research Paper
  • 256 Downloads

Abstract

In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index () of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1–12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.

Keywords

Microbial diversity Soil enzyme activity PAH biodegradation Bacterial community 

Notes

Acknowledgements

This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2018ZX07111-002 and 2018ZX07110-004), Beijing Municipal Science and Technology Plan Project (Z171100000717010 and Z171100004417025), and China IWHR Program (KY169913).

References

  1. 1.
    Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefPubMedGoogle Scholar
  2. 2.
    Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, Pereira CB, Löhr CV, Arlt VM, Phillips DH, Williams DE, Baird WM (2012) Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 264(3):377–386.  https://doi.org/10.1016/j.taap.2012.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amezcua-Allieri MA, Ávila-Chávez MA, Trejo A, Meléndez-Estrada J (2012) Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction. Chemosphere 86(10):985–993.  https://doi.org/10.1016/j.chemosphere.2011.11.032 CrossRefPubMedGoogle Scholar
  4. 4.
    Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172(2):532–549.  https://doi.org/10.1016/j.jhazmat.2009.07.118 CrossRefPubMedGoogle Scholar
  5. 5.
    Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:11.  https://doi.org/10.4061/2011/805187 CrossRefGoogle Scholar
  6. 6.
    Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8.  https://doi.org/10.1016/S1389-1723(01)80190-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Tamames J, Abellán JJ, Pignatelli M, Camacho A, Moya A (2010) Environmental distribution of prokaryotic taxa. BMC Microbiol 10(1):85.  https://doi.org/10.1186/1471-2180-10-85 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Peng M, Zi X, Wang Q (2015) Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA. Genes Int J Environ Res Public Health 12(10):12002–12015.  https://doi.org/10.3390/ijerph121012002 CrossRefPubMedGoogle Scholar
  9. 9.
    Silva IS, Santos Eda C, Menezes CR, Faria AF, Franciscon E, Grossman M, Durrant LR (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100(20):4669–4675.  https://doi.org/10.1016/j.biortech.2009.03.079 CrossRefPubMedGoogle Scholar
  10. 10.
    Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26(1):37–57.  https://doi.org/10.1080/10408410091154174 CrossRefPubMedGoogle Scholar
  11. 11.
    Mukherjee S, Juottonen H, Siivonen P, Lloret Quesada C, Tuomi P, Pulkkinen P, Yrjala K (2014) Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME J 8(10):2131–2142.  https://doi.org/10.1038/ismej.2014.151 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Singleton DR, Jones MD, Richardson SD, Aitken MD (2013) Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97(18):8381–8391.  https://doi.org/10.1007/s00253-012-4531-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40(4):339–346.  https://doi.org/10.1016/S0045-6535(99)00218-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32(2):155–164.  https://doi.org/10.1016/S0167-7012(98)00020-7 CrossRefGoogle Scholar
  15. 15.
    Szulc A, Ambrozewicz D, Sydow M, Lawniczak L, Piotrowska-Cyplik A, Marecik R, Chrzanowski L (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel–oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128.  https://doi.org/10.1016/j.jenvman.2013.11.006 CrossRefGoogle Scholar
  16. 16.
    Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores Technol 96(9):1049–1055.  https://doi.org/10.1016/j.biortech.2004.09.008 CrossRefGoogle Scholar
  17. 17.
    Holben WE, Feris KP, Kettunen A, Apajalahti JH (2004) GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis. Appl Environ Microbiol 70(4):2263–2270CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59(3):695–700Google Scholar
  19. 19.
    Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42(3):252–258CrossRefPubMedGoogle Scholar
  20. 20.
    Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Meiners T, Müller C, Obermaier E, Prati D, Socher SA, Sonnemann I, Wäschke N, Wubet T, Wurst S, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German Biodiversity exploratories. Ecol Evol 4(18):3514–3524.  https://doi.org/10.1002/ece3.1155 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Araújo ASFd M WJd (2010) Soil microbial biomass in organic farming system. Ciência Rural 40:2419–2426CrossRefGoogle Scholar
  22. 22.
    Baran S, Bielińska JE, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118(3):221–232.  https://doi.org/10.1016/S0016-7061(03)00205-2 CrossRefGoogle Scholar
  23. 23.
    Wang Y, Fang L, Lin L, Luan T, Tam NF (2014) Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 99:152–159.  https://doi.org/10.1016/j.chemosphere.2013.10.054 CrossRefPubMedGoogle Scholar
  24. 24.
    Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, Monteiro RA, Baura VA, Pedrosa FO (2010) Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic forest. Appl Environ Microb 76(14):4744–4749.  https://doi.org/10.1128/AEM.03025-09 CrossRefGoogle Scholar
  25. 25.
    Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974.  https://doi.org/10.1128/aem.05402-11 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lors C, Ryngaert A, Périé F, Diels L, Damidot D (2010) Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil. Chemosphere 81(10):1263–1271.  https://doi.org/10.1016/j.chemosphere.2010.09.021 CrossRefPubMedGoogle Scholar
  27. 27.
    Izmalkova TY, Sazonova OI, Nagornih MO, Sokolov SL, Kosheleva IA, Boronin AM (2013) The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 164(3):244–253.  https://doi.org/10.1016/j.resmic.2012.12.007 CrossRefPubMedGoogle Scholar
  28. 28.
    Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbial Biotechnol 3(2):136–164.  https://doi.org/10.1111/j.1751-7915.2009.00130.x CrossRefGoogle Scholar
  29. 29.
    Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189(2):464–472.  https://doi.org/10.1128/jb.01310-06 CrossRefPubMedGoogle Scholar
  30. 30.
    Seo J-S, Keum Y-S, Li QX (2009) bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309.  https://doi.org/10.3390/ijerph6010278 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mohan SV, Shailaja S, Krishna MR, Reddy KB, Sarma PN (2006) Bioslurry phase degradation of di-ethyl phthalate (DEP) contaminated soil in periodic discontinuous mode operation: influence of bioaugmentation and substrate partition. Process Biochem 41(3):644–652.  https://doi.org/10.1016/j.procbio.2005.08.018 CrossRefGoogle Scholar
  32. 32.
    Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375.  https://doi.org/10.1016/j.micres.2009.08.001 CrossRefPubMedGoogle Scholar
  33. 33.
    van Herwijnen R, Joffe B, Ryngaert A, Hausner M, Springael D, Govers HA, Wuertz S, Parsons JR (2006) Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture. FEMS Microbiol Ecol 55(1):122–135.  https://doi.org/10.1111/j.1574-6941.2005.00001.x CrossRefPubMedGoogle Scholar
  34. 34.
    El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation?. Curr Opin Microbiol 8(3):268–275.  https://doi.org/10.1016/j.mib.2005.04.011 CrossRefPubMedGoogle Scholar
  35. 35.
    Martin F, Torelli S, Le Paslier D, Barbance A, Martin-Laurent F, Bru D, Geremia R, Blake G, Jouanneau Y (2012) Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut (Barking., Essex, 1987) 162:345–353  https://doi.org/10.1016/j.envpol.2011.11.032 CrossRefGoogle Scholar
  36. 36.
    Bollmann A, Palumbo AV, Lewis K, Epstein SS (2010) Isolation and physiology of bacteria from contaminated subsurface sediments. Appl Environ Microbiol 76(22):7413–7419.  https://doi.org/10.1128/aem.00376-10 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Venkata Mohan S, Prasanna D, Purushotham Reddy B, Sarma PN (2008) Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: influence of bioaugmentation. Int Biodeter Biodegr 62(2):162–169.  https://doi.org/10.1016/j.ibiod.2008.01.006 CrossRefGoogle Scholar
  38. 38.
    Kazunga C, Aitken MD (2000) Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microb 66(5):1917–1922CrossRefGoogle Scholar
  39. 39.
    Lin Y, Cai L-X (2008) PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Mar Pollut Bull 57(6):703–706.  https://doi.org/10.1016/j.marpolbul.2008.03.025 CrossRefPubMedGoogle Scholar
  40. 40.
    Tabatabaee MS, Mazaheri Assadi M (2013) Vacuum distillation residue upgrading by an indigenous Bacillus cereus. J Environ Health Sci Eng 11:18–18.  https://doi.org/10.1186/2052-336X-11-18 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jacques RJ, Okeke BC, Bento FM, Teixeira AS, Peralba MC, Camargo FA (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99(7):2637–2643.  https://doi.org/10.1016/j.biortech.2007.04.047 CrossRefPubMedGoogle Scholar
  42. 42.
    Soufiane B, Cote JC (2013) Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. Fems Microbiol Lett 341(2):127–137.  https://doi.org/10.1111/1574-6968.12106 CrossRefPubMedGoogle Scholar
  43. 43.
    Seo JS, Keum YS, Harada RM, Li QX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55(14):5383–5389.  https://doi.org/10.1021/jf0637630 CrossRefPubMedGoogle Scholar
  44. 44.
    Lipińska A, Wyszkowska J, Kucharski J (2015) Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int 22(23):18519–18530.  https://doi.org/10.1007/s11356-015-5329-2 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ferreira L, Rosales E, Danko AS, Sanromán MA, Pazos MM (2016) Bacillus thuringiensis a promising bacterium for degrading emerging pollutants. Process Saf Environ Prot 101:19–26.  https://doi.org/10.1016/j.psep.2015.05.003 CrossRefGoogle Scholar
  46. 46.
    Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48 Pt 4:1373–1382.  https://doi.org/10.1099/00207713-48-4-1373 CrossRefGoogle Scholar
  47. 47.
    Maiti A, Das S, Bhattacharyya N (2012) Isolation and characterization of a new bacterial strain from petroleum oil contaminated soil, India. J Sci 2:103–108Google Scholar
  48. 48.
    Maiti A, Das S, Bhattacharyya N (2013) High gelatinase activity of a newly isolated polycyclic aromatic hydrocarbon degrading bacteria Bacillus weihenstephanensis strain AN1. J Pharm Res 6(1):199–204.  https://doi.org/10.1016/j.jopr.2012.11.041 CrossRefGoogle Scholar
  49. 49.
    Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res Int 22(19):14852–14861.  https://doi.org/10.1007/s11356-015-4488-5 CrossRefPubMedGoogle Scholar
  50. 50.
    Park JY, Sang BI (2007) Change of sludge consortium in response to sequential adaptation to benzene, toluene, and o-xylene. J Microbiol Biotechnol 17(11):1772–1781PubMedGoogle Scholar
  51. 51.
    Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. Strain KP7: expression in Escherichia coli. J Bacteriol 182(8):2134–2141CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38(6):1331–1337.  https://doi.org/10.1016/S0045-6535(98)00534-7 CrossRefPubMedGoogle Scholar
  53. 53.
    Ryan MP, Pembroke JT, Adley CC (2007) Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol 103(4):754–764.  https://doi.org/10.1111/j.1365-2672.2007.03361.x CrossRefPubMedGoogle Scholar
  54. 54.
    Bucheli-Witschel M, Hafner T, Ruegg I, Egli T (2009) Benzene degradation by Ralstonia pickettii PKO1 in the presence of the alternative substrate succinate. Biodegradation 20(3):419–431.  https://doi.org/10.1007/s10532-008-9233-z CrossRefPubMedGoogle Scholar
  55. 55.
    Plaza GA, Ulfig K, Brigmon RL (2005) Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Pol J Microbiol 54(2):161–167PubMedGoogle Scholar
  56. 56.
    Chávez-Gómez B, Quintero R, Esparza-García F, Mesta-Howard AM, Zavala Díaz. de la Serna FJ, Hernández-Rodríguez CH, Gillén T, Poggi-Varaldo HM, Barrera-Cortés J, Rodríguez-Vázquez R (2003) Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour Technol 89(2):177–183.  https://doi.org/10.1016/S0960-8524(03)00037-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohui Zhao
    • 1
  • Fuqiang Fan
    • 2
  • Huaidong Zhou
    • 1
  • Panwei Zhang
    • 1
  • Gaofeng Zhao
    • 1
  1. 1.Department of Water EnvironmentChina Institute of Water Resources and Hydropower ResearchBeijingChina
  2. 2.Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandNewfoundlandCanada

Personalised recommendations