Skip to main content

Advertisement

Log in

Enhanced production of anti-PD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-x L and Mcl-1

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Apoptosis has a negative impact on the cell survival state during cell cultivation. To optimize mammalian cell culture for production of biopharmaceuticals, one of the important approaches is to extend cell life through over-expression of anti-apoptotic genes. Here, we reported a cost-effective process to enhance cell survival and production of an antibody through transient co-transfection with anti-apoptotic genes Bcl-x L or Mcl-1 in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI). Under the optimal conditions, it showed reduced levels of apoptosis and improved cell viability after co-transfected with Bcl-x L or Mcl-1. The overall production yield of the antibody anti-PD1 increased approximately 82% in CHO cells co-transfected with Bcl-x L , and 34% in CHO cells co-transfected with Mcl-1. This work provides an effective way to increase viability of host cells through delaying apoptosis onset, thus, raise production yield of biopharmaceuticals without the process of generating stable cell lines and subsequent screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30:1158–1170

    Article  CAS  Google Scholar 

  2. Birch JR, Onakunle Y (2005) Biopharmaceutical proteins: opportunities and challenges. In: Smales CM, James DC (eds) Methods in molecular biology. Therapeutic proteins: methods and protocols, vol 308. Humana Press, Inc., Totowa, NJ, pp 1–16

  3. Trill JJ, Shatzman AR, Ganguly S (1995) Production of monoclonal antibodies in COS and CHO cells. Curr Opin Biotechnol 6:553–560

    Article  CAS  Google Scholar 

  4. Hacker DL, De Jesus M, Wurm FM (2009) 25 years of recombinant proteins from reactor-grown cells—where do we go from here? Biotechnol Adv 27:1023–1027

    Article  CAS  Google Scholar 

  5. DrugBank (2017) About DrugBank. https://www.drugbank.ca/about. Accessed 14 Nov 2017

  6. Zhu J (2013) Update on production of recombinant therapeutic protein: transient gene expression. Smithers Rapra, Shropshire

    Google Scholar 

  7. Ding K, Han L, Zong H, Chen J, Zhang B, Zhu J (2017) Production process reproducibility and product quality consistency of transient gene expression in HEK293 cells with anti-PD1 antibody as the model protein. Appl Microbiol Biotechnol 101:1889–1898

    Article  CAS  Google Scholar 

  8. Daramola O, Stevenson J, Dean G, Hatton D, Pettman G, Holmes W, Field R (2014) A high-yielding CHO transient wystem: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog 30:132–141

    Article  CAS  Google Scholar 

  9. Cain K, Peters S, Hailu H, Sweeney B, Stephens P, Heads J, Sarkar K, Ventom A, Page C, Dickson A (2013) A CHO cell line engineered to express XBP1 and ERO1-Lalpha has increased levels of transient protein expression. Biotechnol Prog 29:697–706

    Article  CAS  Google Scholar 

  10. Rajendra Y, Hougland MD, Alam R, Morehead TA, Barnard GC (2015) A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line:process development and product quality assessment. Biotechnol Bioeng 112:977–986

    Article  CAS  Google Scholar 

  11. Steger K, Brady J, Wang WL, Duskin M, Donato K, Peshwa M (2015) CHO-s antibody titers > 1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines. J Biomol Screen 20:545–551

    Article  CAS  Google Scholar 

  12. Jain NK, Barkowski-Clark S, Altman R, Johnson K, Sun F, Zmuda J, Liu CY, Kita A, Schulz R, Neill A, Ballinger R, Patel R, Liu J, Mpanda A, Huta B, Chiou H, Voegtli W, Panavas T (2017) A high density CHO-S transient transfection system: comparison of ExpiCHO and Expi293. Protein Expr Purif 134:38–46

    Article  CAS  Google Scholar 

  13. Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture:strategies for apoptosis inhibition. Trends Biotechnol 22:174–180

    Article  CAS  Google Scholar 

  14. Goswami J, Sinskey AJ, Steller H, Stephanopoulos GN, Wang DIC (1999) Apoptosis in batch cultures of Chinese Hamster Ovary cells. Biotechnol Bioeng 62:632–640

    Article  CAS  Google Scholar 

  15. Al-Rubeai M, Emery AN (1990) Mechanisms and kinetics of monoclonal antibody synthesis and secretion in synchronous and asynchronous hybridoma cell cultures. J Biotechnol 16:67–85

    Article  CAS  Google Scholar 

  16. Singh RP, Al-Rubeai M, Gregory CD, Emery AN (1994) Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng 44:720–726

    Article  CAS  Google Scholar 

  17. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  Google Scholar 

  18. Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  Google Scholar 

  19. Mastrangelo AJ, Betenbaugh MJ (1998) Overcoming apoptosis: new methods for improving protein-expression systems. Trends Biotechnol 16:88–95

    Article  CAS  Google Scholar 

  20. Yang J, Liu XS, Bhalla K, Kim CN, Ibrado AM, Cai JY, Peng TI, Jones DP, Wang XD (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  Google Scholar 

  21. Chiang GG, Sisk WP (2005) Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91:779–792

    Article  CAS  Google Scholar 

  22. Tey BT, Singh RP, Piredda L, Piacentini M, Al-Rubeai M (2000) Influence of Bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 68:31–43

    Article  CAS  Google Scholar 

  23. Meents H, Enenkel B, Eppenberger HM, Werner RG, Fussenegger M (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants Bcl-2/Bcl-xL on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716

    Article  CAS  Google Scholar 

  24. Mastrangelo AJ, Hardwick JM, Bex F, Betenbaugh MJ (2000) Part I. Bcl-2 and Bcl-xL limit apoptosis upon infection with alphavirus vectors. Biotechnol Bioeng 67:544–554

    Article  CAS  Google Scholar 

  25. Charbonneau JR, Furtak T, Lefebvre J, Gauthier ER (2003) Bcl-xL expression interferes with the effects of l-glutamine supplementation on hybridoma cultures. Biotechnol Bioeng 81:279–290

    Article  CAS  Google Scholar 

  26. Simpson NH, Singh RP, Perani A, Goldenzon C, Al-Rubeai M (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the Bcl-2 gene. Biotechnol Bioeng 59:90–98

    Article  CAS  Google Scholar 

  27. Figueroa B Jr, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5:230–245

    Article  CAS  Google Scholar 

  28. Figueroa B Jr, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 85:589–600

    Article  CAS  Google Scholar 

  29. Jung D, Cote S, Drouin M, Simard C, Lemieux R (2002) Inducible expression of Bcl-xL restricts apoptosis resistance to the antibody secretion phase in hybridoma cultures. Biotechnol Bioeng 79:180–187

    Article  CAS  Google Scholar 

  30. Gauthier ER, Piche L, Lemieux G, Lemieux R (1996) Role of Bcl-xL in the control of apoptosis in murine myeloma cells. Cancer Res 56:1451–1456

    CAS  Google Scholar 

  31. Charbonneau JR, Gauthier ER (2000) Prolongation of murine hybridoma cell survival in stationary batch culture by Bcl-xL expression. Cytotechnology 34:131–139

    Article  CAS  Google Scholar 

  32. Majors BS, Betenbaugh MJ, Pederson NE, Chiang GG (2009) Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese Hamster Ovary Cells. Biotechnol Prog 25:1161–1168

    Article  CAS  Google Scholar 

  33. Zhai D, Jin C, Huang Z, Satterthwait AC, Reed JC (2008) Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J Biol Chem 283:9580–9586

    Article  CAS  Google Scholar 

  34. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to Bcl-2. Proc Natl Acad Sci USA 90:3516–3520

    Article  CAS  Google Scholar 

  35. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81

    Article  Google Scholar 

  36. Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y (2003) Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng 84:332–342

    Article  CAS  Google Scholar 

  37. Osmekhina E, Neubauer A, Klinzing K, Myllyharju J, Neubauer P (2010) Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microb Cell Fact 9:48

    Article  Google Scholar 

  38. Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39:141–153

    Article  CAS  Google Scholar 

  39. Zustiak MP, Jose L, Xie YQ, Zhu JW, Betenbaugh MJ (2014) Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnol J 9:1164–1174

    Article  CAS  Google Scholar 

  40. Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103:542–551

    Article  CAS  Google Scholar 

  41. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30(2):e9

    Article  Google Scholar 

  42. Han YK, Ha TK, Lee SJ, Lee JS, Lee GM (2011) Autophagy and apoptosis of recombinant Chinese hamster ovary cells during fed-batch culture: effect of nutrient supplementation. Biotechnol Bioeng 108:2182–2192

    Article  CAS  Google Scholar 

  43. Kim YG, Kim JY, Mohan C, Lee GM (2009) Effect of Bcl-xL overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition. Biotechnol Bioeng 103:757–766

    Article  CAS  Google Scholar 

  44. Majors BS, Betenbaugh MJ, Chiang GG (2007) Links between metabolism and apoptosis in mammalian cells: applications for anti-apoptosis engineering. Metab Eng 9:317–326

    Article  CAS  Google Scholar 

  45. Majors BS, Betenbaugh MJ, Pederson NF, Chiang GG (2008) Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bcl-xL. Biotechnol Bioeng 101:567–578

    Article  CAS  Google Scholar 

  46. Sandhu KS, Al-Rubeai M (2009) The effect of Bcl-2, YAMA, and XIAP over-expression on apoptosis and adenovirus production in HEK293 cell line. Biotechnol Bioeng 104:752–765

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Natural Science Foundation of Shanghai [Grant No. 15ZR1423800].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baohong Zhang or Jianwei Zhu.

Ethics declarations

Conflict of interest

All the authors reviewed and agreed to submit this manuscript. The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The study does not contain experiments using animals and human studies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2018_1898_MOESM1_ESM.tif

Supplement Fig. 1 Optimization of transfection efficiency in 3D plot showing the transfection efficiencies in CHO cells at different DNA: PEI ratios, DNA concentrations and cell concentrations. Samples were analyzed 48 h after transfection for GFP expression by flow cytometry (TIF 2139 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Han, L., Zong, H. et al. Enhanced production of anti-PD1 antibody in CHO cells through transient co-transfection with anti-apoptotic genes Bcl-x L and Mcl-1. Bioprocess Biosyst Eng 41, 633–640 (2018). https://doi.org/10.1007/s00449-018-1898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1898-z

Keywords

Navigation