Bioprocess and Biosystems Engineering

, Volume 42, Issue 4, pp 631–642 | Cite as

Optimization of fermentation conditions for carotenoid production in the radiation-resistant strain Deinococcus xibeiensis R13

  • Liqing Tian
  • Xian XuEmail author
  • Ling Jiang
  • Zhidong Zhang
  • He HuangEmail author
Research Paper


Deinococcus xibeiensis R13 was isolated from an extreme environment in Xinjiang, China, and can resist gamma-radiation and UV-irradiation. In this study, D. xibeiensis R13 was shown to be capable of efficiently producing carotenoids in culture, and factors influencing its productivity were identified. The maximum carotenoid yield was observed at an initial temperature of 30 °C and pH 7.0 in the presence of fructose, tryptone at a C/N ratio of 1:5, and 10 µM Fe2+. The carotenoid yield under modified culture conditions was 6.64 mg/L after fermentation for 48 h, representing an increase of 84% compared to the original conditions. The biomass reached 7.22 g/L, which was 2.19-fold higher than under non-optimized conditions. The produced carotenoids were extracted from R13 and analyzed by UPLC-MS. This is the first study of carotenoid production by the new strain D. xibeiensis R13, which provides a new source for the microbial fermentation of natural carotenoids, and also provides a good reference for industrial production of other carotenoids and other terpenoid products.


Deinococcus xibeiensis R13 Carotenoids Growth media Growth conditions Optimization 



This work was supported by the Joint Fund of the National Natural Science Foundation of China (U1603112), the National Natural Science Foundation of China (21776136, 21606129), the Program for Innovative Research Teams in Universities of Jiangsu Province (2015), and The Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTC1810).

Supplementary material

449_2018_2069_MOESM1_ESM.doc (41 kb)
Supplementary material 1 (DOC 41 KB)


  1. 1.
    Sankari M, Rao PR, Hemachandran H, Pullela PK, George PDC, Tayubi IA, Subramanian B, Gothandam KM, Singh P, Ramamoorthy S (2017) Prospects and progress in the production of valuable carotenoids: insights from metabolic engineering, synthetic biology, and computational approaches. J Biotechnol 266:89–101CrossRefGoogle Scholar
  2. 2.
    Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–274CrossRefGoogle Scholar
  3. 3.
    Yabuzaki J (2017) Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database J Biol Databases Curation 2017:bax004Google Scholar
  4. 4.
    Tian B, Hua Y (2010) Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol 18:512–520CrossRefGoogle Scholar
  5. 5.
    Saini RK, Keum YS (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:1–2CrossRefGoogle Scholar
  6. 6.
    Saejung C, Apaiwong P (2015) Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol Bioprocess Eng 20:701–707CrossRefGoogle Scholar
  7. 7.
    Mukherjee T, Bose S, Mukhopadhyay SK (2017) Antioxidant properties of the carotenoid extracts of three Deinococcus–Thermus phylum bacteria, Meiothermus sp. strains RP and TP and Thermus sp. strain YY from Paniphala hot spring, India. Nutrire 42:7CrossRefGoogle Scholar
  8. 8.
    Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77:383–392CrossRefGoogle Scholar
  9. 9.
    Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 75:133–191CrossRefGoogle Scholar
  10. 10.
    Tian B, Sun Z, Shen S, Wang H, Jiao J, Wang L, Hu Y, Hua Y (2009) Effects of carotenoids from Deinococcus radiodurans on protein oxidation. Lett Appl Microbiol 49:689–694CrossRefGoogle Scholar
  11. 11.
    Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta Gen Subj 1770:902–911CrossRefGoogle Scholar
  12. 12.
    Cheng J, Zhang Z, Zheng Z, Lv G, Wang L, Tian B, Hua Y (2014) Antioxidative and hepatoprotective activities of Deinoxanthin-Rich extract from Deinococcus radiodurans R1 against carbon tetrachloride-induced liver injury in mice. Trop J Pharm Res 13:581CrossRefGoogle Scholar
  13. 13.
    Choi YJ, Hur JM, Lim S, Jo M, Kim DH, Choi JI (2014) Induction of apoptosis by deinoxanthin in human cancer cells. Anticancer Res 34:1829Google Scholar
  14. 14.
    SC HB, JK M, KW F, LP MMZ W, MJ D (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90CrossRefGoogle Scholar
  15. 15.
    Misra CS, Appukuttan D, Kantamreddi VS, Rao AS, Apte SK (2012) Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioeng Bugs 3:44–48Google Scholar
  16. 16.
    Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861CrossRefGoogle Scholar
  17. 17.
    Li Y, Zhu H, Lei X, Zhang H, Zheng W, Xu H, Tian Y, Yu Z, Zheng T (2015) The first evidence of deinoxanthin from Deinococcus sp.Y35 with strong algicidal effect on the toxic dinoflagellate Alexandrium tamarense. J Hazard Mater 290:87–95CrossRefGoogle Scholar
  18. 18.
    Bornot J, Aceves-Lara CA, Molina-Jouve C, Uribelarrea JL, Gorret N (2014) Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300. Extremophiles 18:1009–1021CrossRefGoogle Scholar
  19. 19.
    Bornot J, Molinajouve C, Uribelarrea JL, Gorret N (2014) Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture. Appl Microbiol Biotechnol 98:1281–1290CrossRefGoogle Scholar
  20. 20.
    He Y (2009) High cell density production of Deinococcus radiodurans under optimized conditions. J Ind Microbiol Biotechnol 36:539CrossRefGoogle Scholar
  21. 21.
    Matagómez LC, Montañez JC, Méndezzavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12CrossRefGoogle Scholar
  22. 22.
    Wu Y (2005) Study on the extraction methods of carotenoids from fermented liquor of Deinococcus radiodurans. J Chin Inst Food Sci Technol 5:36–41Google Scholar
  23. 23.
    Wozniak A, Lozano C, Barahona S, Niklitschek M, Marcoleta A, Alcaíno J, Sepulveda D, Baeza M, Cifuentes V (2011) Differential carotenoid production and gene expression in Xanthophyllomyces dendrorhous grown in a nonfermentable carbon source. Fems Yeast Res 11:252–262CrossRefGoogle Scholar
  24. 24.
    Yuan L, Lei-Lei LI, Tao Z, Fei L, Ming C, Qin-Zhe J, Wang XG (2016) Influence of carbon source on the accumulation of carotenoid during the Schizochytrium ATCC20888 fermentation. Sci Technol Food Ind (13):148–151Google Scholar
  25. 25.
    Han M, He Q, Zhang WG (2012) Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol 42:293–303CrossRefGoogle Scholar
  26. 26.
    Hu Y, Xu X, Song P, Jiang L, Zhang Z, Huang H (2013) Draft genome sequence of Deinococcus xibeiensis R13, a new carotenoid-producing strain. Genome Announc 1:e00987-13CrossRefGoogle Scholar
  27. 27.
    Wang W, Mao J, Zhang ZD, Tang QY, Xie YQ, Zhu J, Zhang LX, Liu ZH, Shi YH, Goodfellow M (2010) Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evolut Microbiol 60:2006–2010CrossRefGoogle Scholar
  28. 28.
    Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y (2016) Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact 15:113CrossRefGoogle Scholar
  29. 29.
    Naghavi FS, Hanachi P, Soudi MR, Saboora A, Ghorbani A (2013) Evaluation of the relationship between the incubation time and carotenoid production in Rhodotorula slooffiae and R. mucilaginosa isolated from leather tanning wastewater. Iran J Basic Med Sci 16:1114–1118Google Scholar
  30. 30.
    Frengova G, Simova E, Dm (2004) Improvement of carotenoid-synthesizing yeast rhodotorula rubra by chemical mutagenesis. Zeitschrift Für Naturforschung C J Biosci 59:99–103CrossRefGoogle Scholar
  31. 31.
    Kim SG, Chu KH, Kim EY (2011) Determination of optimum fermentation conditions for carotenoid production by Rhodotorula aurantiaca K-505. Korean J Chem Eng 28:216–220CrossRefGoogle Scholar
  32. 32.
    Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I (2013) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29:1009–1017CrossRefGoogle Scholar
  33. 33.
    Wen Z, Liu Z, Hou Y, Liu C, Gao F, Zheng Y, Chen F (2015) Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzyme Microb Technol 78:10–17CrossRefGoogle Scholar
  34. 34.
    Bu X, Sun L, Shang F, Yan G (2017) Comparative metabolomics profiling of engineered Saccharomyces cerevisiae lead to a strategy that improving β-carotene production by acetate supplementation. Plos One 12:e0188385CrossRefGoogle Scholar
  35. 35.
    Wu W, Yu X (2013) Effect of different carbon source on expression of carotenogenic genes and astaxanthin production in Xanthophyllomyces dendrorhous. Adv J Food Sci Technol 5:1375–1379CrossRefGoogle Scholar
  36. 36.
    Zhang TC, Li W, Luo XG, Feng CX, Zhang MH, Du W, Ma DY (2015) Increase of the lycopene production in the recombinant strains of Escherichia coli by supplementing with fructose. Lecture Not Electr Eng 332:29–35CrossRefGoogle Scholar
  37. 37.
    Wen D, Song Y, Liu M, Yang H, Yao Z, Fan Y, Luo X, Li Z, Nan W, He H (2016) Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source. Biotech Lett 38:1571–1577CrossRefGoogle Scholar
  38. 38.
    Yang J, Guo L (2014) Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact 13(1(2014-11-18)):160CrossRefGoogle Scholar
  39. 39.
    Jing K, He S, Chen T, Lu Y, Ng IS (2016) Enhancing beta-carotene biosynthesis and gene transcriptional regulation in Blakeslea trispora with sodium acetate. Biochem Eng J 114:10–17CrossRefGoogle Scholar
  40. 40.
    Kim J, Kong MK, Sang YL, Lee PC (2010) Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World J Microbiol Biotechnol 26:2231–2239CrossRefGoogle Scholar
  41. 41.
    Saenge C, Cheirsilp B, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218CrossRefGoogle Scholar
  42. 42.
    Yuan SL, Wu JY (2007) Optimization of cell growth and carotenoid production of Xanthophyllomyces dendrorhous through statistical experiment design. Biochem Eng J 36:182–189CrossRefGoogle Scholar
  43. 43.
    Tkáčová J, Čaplová J, Klempová T, Čertík M (2017) Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis. Ann Microbiol 67:541–551CrossRefGoogle Scholar
  44. 44.
    Shi F, Zhan W, Li Y, Wang X (2014) Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. World J Microbiol Biotechnol 30:125–133CrossRefGoogle Scholar
  45. 45.
    Silva CM, De MdBT, Kalil, de Medeiros SJ, Burkert JF (2016) Raw glycerol and parboiled rice effluent for carotenoid production: effect of the composition of culture medium and initial pH. Food Technol Biotechnol 54:489Google Scholar
  46. 46.
    Dias C, Silva C, Freitas C, Reis A, da Silva T (2016) Effect of medium pH on Rhodosporidium toruloides NCYC 921 carotenoid and lipid production evaluated by flow cytometry. Appl Biochem Biotechnol 179:776–787CrossRefGoogle Scholar
  47. 47.
    Sowmya R, Sachindra NM (2015) Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: influence of culture conditions and nutrient composition. Biocatal Agric Biotechnol 4:559–567CrossRefGoogle Scholar
  48. 48.
    Calegari-Santos R, Diogo RA, Fontana JD, Bonfim TMB (2016) Carotenoid production by halophilic archaea under different culture conditions. Curr Microbiol 72:1–11CrossRefGoogle Scholar
  49. 49.
    Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
  2. 2.College of PharmacyNanjing Tech UniversityNanjingChina
  3. 3.College of Food Science and Light IndustryNanjing Tech UniversityNanjingChina
  4. 4.Institute of MicrobiologyXinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous RegionUrumqiChina

Personalised recommendations