Skip to main content
Log in

Complex metabolic network of 1,3-propanediol transport mechanisms and its system identification via biological robustness

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The bioconversion of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate metabolic network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. Since there are some uncertain factors in the fermentation, especially the transport mechanisms of 1,3-PD across cell membrane, the metabolic network contains multiple possible metabolic systems. Considering the genetic regulation of dha regulon and inhibition of 3-hydroxypropionaldehyde to the growth of cells, we establish a 14-dimensional nonlinear hybrid dynamical system aiming to determine the most possible metabolic system and the corresponding optimal parameter. The existence, uniqueness and continuity of solutions are discussed. Taking the robustness index of the intracellular substances together as a performance index, a system identification model is proposed, in which 1,395 continuous variables and 90 discrete variables are involved. The identification problem is decomposed into two subproblems and a parallel particle swarm optimization procedure is constructed to solve them. Numerical results show that it is most possible that 1,3-PD passes the cell membrane by active transport coupled with passive diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  2. Xu GX (2010) Robust control of continuous bioprocesses. Math Probl Eng. doi:10.1155/2010/627035

  3. Wang L (2012) Modelling and regularity of nonlinear impulsive switching dynamical system in fed-batch culture. Abstr Appl Anal 2012, art ID 295627. doi:10.1155/2012/29562

  4. Zhang QR, Teng H, Sun YQ, Xiu ZL, Zeng AP (2008) Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumonia. Bioprocess Biosyst Eng 31:127–135

    Article  CAS  Google Scholar 

  5. Wang L, Xiu ZL, Gong ZH, Feng EM (2012) Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture. Int J Biomath 5(4):1250034. doi:10.1142/S179352451100174X

    Google Scholar 

  6. Wang L, Xiu ZL, Zhang YD, Feng EM (2011) Optimal control for Multistage nonlinear dynamic system of microbial bioconversion in batch culture. J Appl Math 2011, art ID 624516. doi:10.1155/2011/624516

  7. Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546

    CAS  Google Scholar 

  8. Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environment Microbiol 62:1448–1451

    CAS  Google Scholar 

  9. Hao J, Lin RH, Zheng ZM, Sun YQ, Liu DH (2008) 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Kiebsiella pneumoniae. J Ind Microbiol Biotechnol 35:1615–1624

    Article  CAS  Google Scholar 

  10. Zeng AP, Deckwer WD (1995) A kinetic model for substratc and energy consumption of microbial growth under substrate-sufficient condition. Biotechnol Prog 11:71–79

    Article  CAS  Google Scholar 

  11. Xiu ZL, Zeng AP, Jia AL (2000) Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-PD. Dalian Univ Technol 40:428–433

    CAS  Google Scholar 

  12. Sun YQ, Qi WT, Teng H, Xiu ZL, Zeng AP (2008) Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem Eng J 38(1):22–32

    Article  CAS  Google Scholar 

  13. Ye JX, Feng EM, Wang L, Xiu ZL, Sun YQ (2009) Modeling and robustness analysis of biochemical networks of glycerol metabolism by klebsiella pneumoniae. Complex Sci 4:446–457

    Article  Google Scholar 

  14. Zhang YD, Feng EM, Xiu ZL (2011) Robust analysis of hybrid dynamical system for 1,3-propanediol transport mechanisms in microbial continuous fermentation. Math Comput Model 54:3164–3171

    Article  Google Scholar 

  15. Wang L (2013) Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioprocess Biosyst Eng 36:433–441. doi:10.1007/s0044901208007

  16. Sun YQ, Ye JX, Mu XJ, Teng H, Feng EM, Zeng AP, Xiu ZL (2012) Nonlinear mathematical simulation and analysis of dha regulon for glycerol metabolism in Klebsiella pneumoniae. Chin J Chem Eng 20(5):958–970

    Article  CAS  Google Scholar 

  17. Kitano H (2004) Biological robustness. Nat Rev Genetic 5(11):826–837

    Article  CAS  Google Scholar 

  18. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  CAS  Google Scholar 

  19. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    Article  Google Scholar 

  20. von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188–192

    Article  Google Scholar 

  21. Bhalla US, Iyengar R (2001) Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11:221–226

    Article  CAS  Google Scholar 

  22. Chen BS, Wang YC, Wu WS, Li WH (2005) A new measure of the robustness of biochemical networks. Bioinformatics 21(11):2698–2705

    Article  CAS  Google Scholar 

  23. Tian TH (2004) Robustness of mathematical models for biological systems. Aust Math Soc 45:565–577

    Google Scholar 

  24. Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4(3):227–235

    Article  CAS  Google Scholar 

  25. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  CAS  Google Scholar 

  26. Stelling J, Sauer V, Szallasi Z, Doyle J (2004) Robustness of cellular functions. Cell 118(6):675–685

    Article  CAS  Google Scholar 

  27. Zeng AP, Rose A, Biebl H, Tag C, Guenzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  Google Scholar 

  28. Karakuzu C (2008) Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA T 47:229–239

    Article  Google Scholar 

  29. Liu L, Liu WX, Cartes DA (2008) Particle swarm optimization based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intel 21:1092–1100

    Article  Google Scholar 

  30. Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD (2004) Parallel global optimization with the particle swarm algorithm. Int J Numer Meth Eng 61:2296–2315

    Article  Google Scholar 

  31. Koh B, George AD, Haftka RT, Fregly BJ (2006) Parallel asynchronous particle swarm optimization. Int J Numer Meth Eng 67:578–595

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by 863 Program (Grant No. 2007AA02Z208), 973 Program (Grant No. 2007CB714304), the National Natural Science Foundation of China (Grant No. 10871033) and Natural Science Foundation of Department of Education, Henan (Grant No. 2008B110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjie Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Feng, E., Wang, L. et al. Complex metabolic network of 1,3-propanediol transport mechanisms and its system identification via biological robustness. Bioprocess Biosyst Eng 37, 677–686 (2014). https://doi.org/10.1007/s00449-013-1037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1037-9

Keywords

Navigation