Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297
Article
CAS
Google Scholar
Xu GX (2010) Robust control of continuous bioprocesses. Math Probl Eng. doi:10.1155/2010/627035
Wang L (2012) Modelling and regularity of nonlinear impulsive switching dynamical system in fed-batch culture. Abstr Appl Anal 2012, art ID 295627. doi:10.1155/2012/29562
Zhang QR, Teng H, Sun YQ, Xiu ZL, Zeng AP (2008) Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumonia. Bioprocess Biosyst Eng 31:127–135
Article
CAS
Google Scholar
Wang L, Xiu ZL, Gong ZH, Feng EM (2012) Modeling and parameter identification for multistage simulation of microbial bioconversion in batch culture. Int J Biomath 5(4):1250034. doi:10.1142/S179352451100174X
Google Scholar
Wang L, Xiu ZL, Zhang YD, Feng EM (2011) Optimal control for Multistage nonlinear dynamic system of microbial bioconversion in batch culture. J Appl Math 2011, art ID 624516. doi:10.1155/2011/624516
Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546
CAS
Google Scholar
Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environment Microbiol 62:1448–1451
CAS
Google Scholar
Hao J, Lin RH, Zheng ZM, Sun YQ, Liu DH (2008) 3-Hydroxypropionaldehyde guided glycerol feeding strategy in aerobic 1,3-propanediol production by Kiebsiella pneumoniae. J Ind Microbiol Biotechnol 35:1615–1624
Article
CAS
Google Scholar
Zeng AP, Deckwer WD (1995) A kinetic model for substratc and energy consumption of microbial growth under substrate-sufficient condition. Biotechnol Prog 11:71–79
Article
CAS
Google Scholar
Xiu ZL, Zeng AP, Jia AL (2000) Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-PD. Dalian Univ Technol 40:428–433
CAS
Google Scholar
Sun YQ, Qi WT, Teng H, Xiu ZL, Zeng AP (2008) Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem Eng J 38(1):22–32
Article
CAS
Google Scholar
Ye JX, Feng EM, Wang L, Xiu ZL, Sun YQ (2009) Modeling and robustness analysis of biochemical networks of glycerol metabolism by klebsiella pneumoniae. Complex Sci 4:446–457
Article
Google Scholar
Zhang YD, Feng EM, Xiu ZL (2011) Robust analysis of hybrid dynamical system for 1,3-propanediol transport mechanisms in microbial continuous fermentation. Math Comput Model 54:3164–3171
Article
Google Scholar
Wang L (2013) Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioprocess Biosyst Eng 36:433–441. doi:10.1007/s0044901208007
Sun YQ, Ye JX, Mu XJ, Teng H, Feng EM, Zeng AP, Xiu ZL (2012) Nonlinear mathematical simulation and analysis of dha regulon for glycerol metabolism in Klebsiella pneumoniae. Chin J Chem Eng 20(5):958–970
Article
CAS
Google Scholar
Kitano H (2004) Biological robustness. Nat Rev Genetic 5(11):826–837
Article
CAS
Google Scholar
Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917
Article
CAS
Google Scholar
Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137
Article
Google Scholar
von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406:188–192
Article
Google Scholar
Bhalla US, Iyengar R (2001) Robustness of the bistable behavior of a biological signaling feedback loop. Chaos 11:221–226
Article
CAS
Google Scholar
Chen BS, Wang YC, Wu WS, Li WH (2005) A new measure of the robustness of biochemical networks. Bioinformatics 21(11):2698–2705
Article
CAS
Google Scholar
Tian TH (2004) Robustness of mathematical models for biological systems. Aust Math Soc 45:565–577
Google Scholar
Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4(3):227–235
Article
CAS
Google Scholar
Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171
Article
CAS
Google Scholar
Stelling J, Sauer V, Szallasi Z, Doyle J (2004) Robustness of cellular functions. Cell 118(6):675–685
Article
CAS
Google Scholar
Zeng AP, Rose A, Biebl H, Tag C, Guenzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911
Article
CAS
Google Scholar
Karakuzu C (2008) Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA T 47:229–239
Article
Google Scholar
Liu L, Liu WX, Cartes DA (2008) Particle swarm optimization based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intel 21:1092–1100
Article
Google Scholar
Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD (2004) Parallel global optimization with the particle swarm algorithm. Int J Numer Meth Eng 61:2296–2315
Article
Google Scholar
Koh B, George AD, Haftka RT, Fregly BJ (2006) Parallel asynchronous particle swarm optimization. Int J Numer Meth Eng 67:578–595
Article
Google Scholar