Skip to main content
Log in

Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study examined a stirred-tank fermenter (STF) containing low-viscosity foaming liquids with an agitation impeller and foam-breaking impeller mounted on the same shaft. Results showed that the performance of the foam-breaking impeller can be improved by changing a conventional six-blade turbine impeller into a rod impeller as the agitation impeller. The volumetric oxygen-transfer coefficient, k L a, in the mechanical foam-control method (MFM) using a six-blade vaned disk as the foam-breaking impeller in the STF with the rod impeller was approximately five times greater than that of the chemical foam-control method (CFM) adding an anti-foaming agent in the STF with the six-blade turbine impeller. Application of the present method to the cultivation of Saccharomyces cerevisiae K-7 demonstrated that the cultivation time up to the maximum cell concentration was remarkably shorter than that achieved using a conventional CFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Concentration of Na2SO3 (kmol m−3)

D F :

Foam-breaking impeller diameter (m)

D T :

Column diameter (m)

G :

Gravitational acceleration (m s−2)

He :

Henry’s law constant (Pa m3 mol−1)

H L :

Static liquid height in vessel (m)

k L a :

Volumetric oxygen-transfer coefficient (s−1)

N :

Impeller rotational speed (rpm)

P :

Partial pressure of oxygen (Pa)

P a :

Pneumatic power of gas input (W)

P g :

Agitation power of gassed liquid (W)

P gm :

Power consumed for agitation and foam breaking (W)

P T :

Power input (W)

Q :

Volumetric gas flow rate (m3 s−1)

Q v :

Specific air-sparge rate (VVM)

t m :

Mixing time (s)

VVM:

Volumetric gas sparged per volume of liquid per minute (min−1)

V L :

Working liquid volume (m3)

μ:

Viscosity of liquid (Pa s)

ρ:

Density of liquid (kg m−3)

σ:

Surface tension of liquid (N m−1)

References

  1. Hall MJ, Dickinson SD, Pritchard R, Evans JI (1973) Foams and foam control in fermentation processes. Prog Ind Microbiol 12:170–234

    Google Scholar 

  2. Viesturs UE, Kristason MZ, Levitans ES (1982) Foams in microbiological processes. Adv Biochem Eng 21:169–224

    CAS  Google Scholar 

  3. Ghildyal NP, Lonsan BK, Karanth NG (1988) Foam control in submerged fermentation. Adv Microbiol 33:173–222

    Article  CAS  Google Scholar 

  4. Yagi H, Yoshida F (1974) Oxygen absorption in fermenters—effect of surfactants, antifoaming agents and sterilized cells. J Ferment Technol 52:905–916

    CAS  Google Scholar 

  5. Takahashi H, Yoshida F (1979) Oxygen transfer in a bubble column for fermentation with Aspergillus niger. J Ferment Technol 57:349–356

    Google Scholar 

  6. Andrew SPS (1982) Gas–liquid mass transfer in microbiological reactors. Trans Instn Chem Eng 60:3–13

    CAS  Google Scholar 

  7. Koide K, Yamazoe S, Harada S (1985) Effects of surface-active substances on gas hold-up and gas–liquid mass transfer in bubble column. J Chem Eng Jpn 18:287–292

    Article  CAS  Google Scholar 

  8. Takesono S, Yasukawa M, Onodera M, Izawa K, Yamagiwa K, Ohkawa A (1993) Performance characteristics of a tower fermenter with mechanical foam control. J Chem Technol Biotechnol 56:97–107

    CAS  Google Scholar 

  9. Takesono S, Onodera M, Yamagiwa K, Ohkawa A (1995) Gas holdup and volumetric mass-transfer coefficient in bubble columns under foam control. J Chem Technol Biotechnol 64:188–194

    Article  CAS  Google Scholar 

  10. Goldberg M, Rubin E (1967) Mechanical foam breaking. Ind Eng Chem Proc Design Dev 6:195–200

    Article  CAS  Google Scholar 

  11. Stocks SM, Cooke M, Heggs PJ (2005) Inverted hollow spinning cone as a device for controlling foam and hold-up in pilot scale gassed agitated fermentation vessels. Chem Eng Sci 60:2231–2238

    Article  CAS  Google Scholar 

  12. Cooke M, Heggs PJ, Eaglesham A, Housley D (2004) Spinning cones as pumps, degassers and level controllers. Chem Eng Res Design 82:719–729

    Article  CAS  Google Scholar 

  13. Deshpande NS, Barigou M (1999) Performance characteristics of novel mechanical foam breakers in a stirred tank reactor. J Chem Technol Biotechnol 74:979–987

    Article  CAS  Google Scholar 

  14. Takesono S, Onodera M, Yoshida M, Yamagiwa K, Ohkawa A (2002) Performance characteristics of mechanical foam-breakers fitted to a stirred-tank reactor. J Chem Technol Biotechnol 78:48–55

    Article  CAS  Google Scholar 

  15. Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. University of Tokyo Press, Tokyo

    Google Scholar 

  16. Satoh K, Shimada H, Yoshino Z (1989) Gas absorption efficiency of gas–liquid contactors with mechanical agitation. Kagaku Kogaku Ronbunshu 15:733–739

    CAS  Google Scholar 

  17. Yoshida F, Akita K (1965) Performance of gas bubble column: volumetric liquid-phase mass transfer coefficient and gas holdup. AIChE J 11:9–13

    Article  CAS  Google Scholar 

  18. Rice RG, Benoit EL (1986) An experimental pressure-response method to measure gas–liquid kinetics. Chem Eng Sci 41:2629–2638

    Article  CAS  Google Scholar 

  19. Ng KS, Gutierrez L (1977) Mechanical foam breaker—means for foam control in wastewater treatment. J Water Pollut Control Fed 49:2310–2317

    Google Scholar 

  20. Takesono S, Onodera M, Ito A, Yoshida M, Yamagiwa K, Ohkawa A (2001) Mechanical control of foaming in stirred-tank reactors. J Chem Technol Biotechnol 76:355–362

    Article  CAS  Google Scholar 

  21. Ruszkowski S (1994) A rotational method for measuring blending performance, and comparison of different impeller types. ICHEME Symposium Series No. 136:283–291

  22. Andou S, Yoshida M, Yamagiwa K, Ohkawa A (1998) Oxygen absorption in a tower fermenter under foam control. Recent Res Dev Ferment Bioeng 1:37–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Takesono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takesono, S., Onodera, M., Toda, K. et al. Improvement of foam breaking and oxygen-transfer performance in a stirred-tank fermenter. Bioprocess Biosyst Eng 28, 235–242 (2006). https://doi.org/10.1007/s00449-005-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0028-x

Keywords

Navigation