Pulsating flow dynamics of sustained, forced pyroclastic density currents: insights from a facies analysis of the Campo de la Piedra Pómez ignimbrite, southern Puna, Argentina

Abstract

The Quaternary Campo de la Piedra Pomez ignimbrite (CPPI) is a superbly exposed, partially indurated, rhyolitic ignimbrite emplaced on the southern Puna of Argentina. It is characterized by a variety of facies that record in unprecedented detail the flow dynamics of the parent pyroclastic density currents (PDCs). Detailed facies analysis and internal architecture defined using a sequential stratigraphy approach reveal that CPPI was formed by sustained PDCs, generated from a low fountain eruptive style (boiling over). The PDCs had overall flow conditions characterized by high particle concentration and limited capability to surmount topographic obstacles. The mobility of the PDCs was largely controlled by high pore pressure and the continuous supply at the source (sustained forced convection-dominated PDCs). The successive forestepping-backstepping stacking patterns identified in the CPPI reflect a marked unsteadiness of its parent PDCs due to a pulsating discharge rate at the source. The lateral facies variations in the CPPI record the non-uniform character of its parent PDCs as they flowed outward from the base of the collapsing fountain. Proximal-medial areas characterized by steady aggradation rates pass through to distal braided thalwegs with highly variable aggradation rates, to frontal edges characterized by the step aggradations of secondary decoupled pumice-rich lobes. Collectively, the facies variations in the CPPI record the complex dynamics of sustained PDCs that include pulsating discharge rate at the source, progressive modification of the original topography, and lateral flow transformations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Acocella V, Gioncada A, Omarini R, Riller U, Mazzuoli R, Vezzoli L (2011) Tectonomagmatic characteristics of the back-arc portion of the Calama–Olacapato–El Toro Fault Zone, Central Andes. Tectonics 30(3)

  2. Arnosio M, Becchio R, Viramonte JG, de Silva S, Viramonte JM (2008) Geocronología e isotopía del Complejo Volcánico Cerro Blanco: un sistema de calderas cuaternario (73-12 ka) en los Andes Centrales del sur. Actas 17° Congreso Geológico Argentino, 1: 177-178, Jujuy.

  3. Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2(1):2

    Article  Google Scholar 

  4. Báez W (2014) Estratigrafía volcánica, estilos eruptivos y evolución del Complejo Volcánico Cerro Blanco, Puna Austral. PHD thesis, Facultad de Ciencias Naturales de la Universidad Nacional de Salta, 204 pp, Salta, Argentina.

  5. Báez W, Arnosio M, Chiodi A, Ortiz Yañes A, Viramonte JG, Bustos E, Giordano G, López JF (2015) Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Revista Mexicana de Ciencias Geológicas 32(1):29–49

    Google Scholar 

  6. Báez W, Chiodi A, Bustos E, Arnosio M, Viramonte JG, Giordano G, Alfaro Ortega B (2017) Mecanismos de emplazamiento y destrucción de los domos lávicos asociados a la Caldera del Cerro Blanco, Puna Austral. Rev Asoc Geol Argent 74(2):223–238

    Google Scholar 

  7. Báez W, Bustos E, Chiodi A, Reckziegel F, Arnosio M, de Silva S, Giordano G, Viramonte JG, Sampietro-Vattuone MM, Peña-Monné JL (2020) Eruptive style and flow dynamics of the pyroclastic density currents related to the Holocene Cerro Blanco eruption (Southern Puna plateau, Argentina). J S Am Earth Sci 98:102482

    Article  Google Scholar 

  8. Bardelli L, Arnosio M, Báez W, Suzaño N, Becchio R, Viramonte JG, Bustos E, Bertea E (2020) Multi-banded pumice in the Campo de la Piedra Pómez rhyolitic ignimbrite (Southern Puna Plateau): pre-eruptive physical and chemical interactions between mafic and rhyolitic melts. J S Am Earth Sci, in press 101:102616

    Article  Google Scholar 

  9. Baxter PJ, Neri A, Todesco M (1998) Physical modelling and human survival in pyroclastic flows. Nat Hazards 17(2):163–176

    Article  Google Scholar 

  10. Bear AN, Cas RAF, Giordano G (2009) The implications of spatter, pumice and lithic clast rich proximal co-ignimbrite lag breccias on the dynamics of caldera forming eruptions: the 151 ka Sutri eruption, Vico Volcano, Central Italy. J Volcanol Geotherm Res 181(1):1–24

    Article  Google Scholar 

  11. Brand BD, Mackaman-Lofland C, Pollock NM, Bendaña S, Dawson B, Wichgers P (2014) Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization—Mount St Helens, Washington (USA). J Volcanol Geotherm Res 276:189–214

    Article  Google Scholar 

  12. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Memoir No.27, 143p, London.

  13. Brown RJ, Branney MJ (2004) Bypassing and diachronous deposition from density currents: evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32(5):445–448

    Article  Google Scholar 

  14. Brown RJ, Branney MJ (2013) Internal flow variations and diachronous sedimentation within extensive, sustained, density-stratified pyroclastic density currents flowing down gentle slopes, as revealed by the internal architectures of ignimbrites on Tenerife. Bull Volcanol 75(7):727

    Article  Google Scholar 

  15. Brunori CA, Bignami C, Stramondo S, Bustos E (2013) 20 years of active deformation on volcano caldera: joint analysis of InSAR and AInSAR techniques. Int J Appl Earth Obs Geoinf 23:279–287

    Article  Google Scholar 

  16. Buesch DC (1992) Incorporation and redistribution of locally derived lithic fragments within a pyroclastic flow. Geol Soc Am Bull 104(9):1193–1207

    Article  Google Scholar 

  17. Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58(2):175–193

    Article  Google Scholar 

  18. Bustos E, Báez W, Norini G, Arnosio JM, de Silva S (2019) The geological and structural evolution of the long-lived Miocene-Pleistocene La Hoyada Volcanic Complex in the geodynamic framework of the Central Andes, Argentina. J Volcanol Geotherm Res 385:120–142

  19. Calder ES, Sparks RSJ, Gardeweg MC (2000) Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J Volcanol Geotherm Res 104(1):201–235

    Article  Google Scholar 

  20. Carrasco-Núñez G, Branney MJ (2005) Progressive assembly of a massive layer of ignimbrite with a normal-to-reverse compositional zoning: the Zaragoza ignimbrite of central Mexico. Bull Volcanol 68(1):3–20

    Article  Google Scholar 

  21. Cas RA, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products, and successions. Allen y Unwin, London

    Google Scholar 

  22. Cas RA, Wright HM, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73(10):1583–1609

    Article  Google Scholar 

  23. Chiodi A, Tassi F, Báez W, Filipovich R, Bustos E, Galli M. G., Suzaño N, Ahumada F, Viramonte J G, Giordano G, Pecoraino G, Vaselli O, (2019). Preliminary conceptual model of the Cerro Blanco caldera-hosted geothermal system (Southern Puna, Argentina): inferences from geochemical investigations. J S Am Earth Sci, 94, 102213.

  24. De Rita D, Giordano G, Milli S (1998) Forestepping-backstepping stacking pattern of volcaniclastic successions: Roccamonfina volcano, Italy. J Volcanol Geotherm Res 80(1):155–178

    Article  Google Scholar 

  25. de Silva SL (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17(12):1102–1106

    Article  Google Scholar 

  26. de Silva SL, Bailey JE (2017) Some unique surface patterns on ignimbrites on Earth: a “bird's eye” view as a guide for planetary mappers. J Volcanol Geotherm Res 342:47–60

    Article  Google Scholar 

  27. de Silva SL, Francis PW (1991) Volcanoes of the Central Andes. Springer, Heidelberg

    Google Scholar 

  28. de Silva SL, Kay SM (2018) Turning up the heat: high-flux magmatism in the Central Andes. Elements 14(4):245–250

    Article  Google Scholar 

  29. de Silva SL, Bailey JE, Mandt KE, Viramonte JM (2010) Yardangs in terrestrial ignimbrites: Synergistic remote and field observations on Earth with applications to Mars. Planetary and Space Science 58(4):459–471

    Article  Google Scholar 

  30. de Silva SL, Spagnuolo MG, Bridges NT, Zimbelman JR (2013) Gravel-mantled megaripples of the Argentinean Puna: a model for their origin and growth with implications for Mars. GSA Bull 125(11-12):1912–1929

    Article  Google Scholar 

  31. Doronzo DM (2012) Two new end members of pyroclastic density currents: forced convection-dominated and inertia-dominated. J Volcanol Geotherm Res 219:87–91

    Article  Google Scholar 

  32. Druitt TH (1998) Pyroclastic density currents. Geol Soc Lond, Spec Publ 145(1):145–182

    Article  Google Scholar 

  33. Druitt TH, Avard G, Bruni G, Lettieri P, Maez F (2007) Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull Volcanol 69(8):881–901

    Article  Google Scholar 

  34. Dufek J (2016) The fluid mechanics of pyroclastic density currents. Annu Rev Fluid Mech 48(1):459

    Article  Google Scholar 

  35. Dufek J, Wexler J, Manga M (2009) Transport capacity of pyroclastic density currents: experiments and models of substrate-flow interaction. J Geophys Res 114:B11203

    Article  Google Scholar 

  36. Dufek J, Esposti Ongaro T, Roche O (2015) Pyroclastic density currents: processes and models, In The encyclopedia of volcanoes (Eds): Sigurdsson H, Houghton B, McNutt S R, Rymer H, Stix, 617-629p.

  37. Folkes CB, Wright HM, Cas RA, de Silva SL, Lesti C, Viramonte JG (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. Bull Volcanol 73(10):1427–1454

    Article  Google Scholar 

  38. Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RS, Pyle DM, Tait SR, Mantovani MS, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galan caldera, northwest Argentina. Geol Mag 126(5):515–547

    Article  Google Scholar 

  39. Freymuth H, Brandmeier M, Wörner G (2015) The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib Mineral Petrol 169:58

    Article  Google Scholar 

  40. Gerber TP, Pratson LF, Wolinsky MA, Steel R, Mohr J, Swenson JB, Paola C (2008) Clinoform progradation by turbidity currents: modeling and experiments. J Sediment Res 78(3):220–238

    Article  Google Scholar 

  41. Giordano G (1998) The effect of paleotopography on lithic distribution and facies associations of small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy). J Volcanol Geotherm Res 87(1):255–273

    Article  Google Scholar 

  42. Giordano G (2005) Reconstructing facies architecture and geometry of modern and ancient volcanic successions: case studies from lascar volcano (chile), and roccamonfina volcano (italy). Acta Vulcanol 17(1-2):117–126

    Google Scholar 

  43. Giordano G, Doronzo DM (2017) Sedimentation and mobility of PDCs: a reappraisal of ignimbrites’ aspect ratio. Sci Rep 7(1):4444

    Article  Google Scholar 

  44. Grunder AL, Laporte D, Druitt TH (2005) Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff. J Volcanol Geotherm Res 142(1):89–104

    Article  Google Scholar 

  45. Guzmán S, Grosse P, Montero-López C, Hongn F, Pilger R, Petrinovic I, Seggiaro R, Aramayo A (2014) Spatial–temporal distribution of explosive volcanism in the 25–28° S segment of the Andean Central Volcanic Zone. Tectonophysics 636:170–189

    Article  Google Scholar 

  46. Haag MB, Baez WA, Sommer CA, Arnosio JM, Filipovich RE (2019) Geomorphology and spatial distribution of monogenetic volcanoes in the southern Puna Plateau (NW Argentina). Geomorphology 342:196–209

    Article  Google Scholar 

  47. Henderson ST, Pritchard ME (2013) Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochem Geophys Geosyst 14(5):1358–1374

    Article  Google Scholar 

  48. Hildreth W, Fierstein J (2012) The Novarupta-Katmai eruption of 1912: largest eEruption of the twentieth century: centennial perspectives (No. 1791). Geological Survey (USGS)

  49. Hugenholtz CH, Barchyn TE, Favaro EA (2015) Formation of periodic bedrock ridges on Earth. Aeolian Res 18:135–144

    Article  Google Scholar 

  50. Iverson RM, Vallance JW (2001) New views of granular mass flows. Geology 29(2):115–118

    Article  Google Scholar 

  51. Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustalflow under the Central Andean Altiplano-Puna Plateau. Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision 204:229

    Google Scholar 

  52. Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2010) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán Ignimbrites. Bull Volcanol 73(10):1487–1511

    Article  Google Scholar 

  53. LaBerge RD, Porreca M, Mattei M, Giordano G, Cas RA (2009) Meandering flow of a pyroclastic density current documented by the anisotropy of magnetic susceptibility (AMS) in the quartz latite ignimbrite of the Pleistocene Monte Cimino volcanic centre (central Italy). Tectonophysics 466(1-2):64–78

    Article  Google Scholar 

  54. Lesti C, Porreca M, Giordano G, Mattei M, Cas RA, Wright HM, Folkes CB, Viramonte JG (2011) High-temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses. Bull Volcanol 73(10):1535–1565

    Article  Google Scholar 

  55. Lube G, Breard EC, Jones J, Fullard L, Dufek J, Cronin SJ, Wang T (2019) Generation of air lubrication within pyroclastic density currents. Nat Geosci 1

  56. Lucchi F (2013) Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian archipelago (southernItaly). Geol Soc LondMem 37(1):37–53

    Article  Google Scholar 

  57. Milana JP (2009) Largest wind ripples on Earth? Geology 37(4):343–346

    Article  Google Scholar 

  58. Montero-López MC, Hongn F, Brod JA, Seggiaro R, Marrett R, Sudo M (2010a) Magmatismo ácido del Mioceno Superior-Cuaternario en el área de Cerro Blanco-La Hoyada, Puna Sur. Rev Asoc Geol Argent 67(3):329–348

    Google Scholar 

  59. Montero-López MC, Hongn F, Marrett R, Seggiaro R, Strecker M, Sudo M (2010b) Late Miocene-Pliocene onset of N-S extension along the southern margin of the Central Andean Puna plateau from magmatic, geochronological and structural evidences. Tectonophysics 494(1-2):48–63

    Article  Google Scholar 

  60. Montero-López MC, Hongn F, Seggiaro R, Brod JA, Marrett R (2010c) Estratigrafía y geoquímica del volcanismo de composición intermedia (Mioceno superior-Plioceno) en el extremo oriental de la Cordillera de San Buenaventura (Puna Austral). Rev Asoc Geol Argent 67(1):63–80

    Google Scholar 

  61. Norini G, Báez W, Becchio R, Viramonte J, Giordano G, Arnosio M, Pinton A, Groppelli G (2013) The Calama–Olacapato–El Toro fault system in the Puna Plateau, Central Andes: geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280–1297

    Article  Google Scholar 

  62. Norini G, Cogliati S, Báez W, Arnosio M, Bustos E, Viramonte J, Groppelli G (2014) The geological and structural evolution of the Cerro Tuzgle Quaternary stratovolcano in the back-arc region of the Central Andes, Argentina. J Volcanol Geotherm Res 285:214–228

    Article  Google Scholar 

  63. Petrinovic IA, Mitjavila J, Viramonte JG, Martí J, Becchio R, Arnosio M, Colombo F (1999) Geoquímica y Geocronología de secuencias volcánicas Neógenas de trasarco, en el extremo oriental de la Cadena Volcánica Transversal del Quevar, noroeste de Argentina. In Acta Geológica Hispánica (Eds). Colombo, Queralt Petrinovic: Geología de los Andes Centrales Meridionales: El Noroeste Argentino 34(2-3):255–273

    Google Scholar 

  64. Petrinovic IA, Riller U, Brod JA, Alvarado G, Arnosio M (2006) Bimodal volcanism in a tectonic transfer zone: evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. J Volcanol Geotherm Res 152(3):240–252

    Article  Google Scholar 

  65. Pittari A, Cas RAF, Martí J (2005) The occurrence and origin of prominent massive, pumice-rich ignimbrite lobes within the Late Pleistocene Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 139(3):271–293

    Article  Google Scholar 

  66. Pittari A, Cas RAF, Edgar CJ, Nichols HJ, Wolff JA, Marti J (2006) The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: the Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 152(3):273–315

    Article  Google Scholar 

  67. Pittari A, Cas RA, Monaghan JJ, Martí J (2007) Instantaneous dynamic pressure effects on the behaviour of lithic boulders in pyroclastic flows: the Abrigo Ignimbrite, Tenerife, Canary Islands. Bull Volcanol 69(3):265–279

    Article  Google Scholar 

  68. Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418(6894):167–171

    Article  Google Scholar 

  69. Pritchard ME Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems 5(2).

  70. Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet Sci Lett 188(3):299–311

    Article  Google Scholar 

  71. Robinson JE, Bacon CR, Major JJ, Wright HM, Vallance JW (2017) Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon–Implications for deposition and surface modification. J Volcanol Geotherm Res 342:61–78

    Article  Google Scholar 

  72. Roche O (2012) Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull Volcanol 74(8):1807–1820

    Article  Google Scholar 

  73. Roche O (2015) Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth Planet Sci Lett 418:115–125

    Article  Google Scholar 

  74. Roche O, Gilbertson MA, Phillips JC, Sparks RSJ (2004) Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement. J Geophys Res Solid Earth 109(B10)

  75. Roche O, Montserrat S, Niño Y, Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: insights into the emplacement dynamics of pyroclastic flows. J Geophys Res Solid Earth 115(B9)

  76. Roche O, Phillips J, Kelfoun K, (2013a). Pyroclastic density currents. In S. Fagents, T. Gregg, & R. Lopes (Eds.), Modeling Volcanic Processes: The Physics and Mathematics of Volcanism: 203-229. Cambridge: Cambridge University Press.

  77. Roche O, Niño Y, Mangeney A, Brand B, Pollock N, Valentine GA (2013b) Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows. Geology 41(10):1107–1110

    Article  Google Scholar 

  78. Roche O, Buesch DC, Valentine GA (2016) Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption. Nat Commun 7:10890

    Article  Google Scholar 

  79. Rowley PJ, Roche O, Druitt TH, Cas R (2014) Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows. Bull Volcanol 76(9):855

    Article  Google Scholar 

  80. Rust AC, Cashman KV (2007) Multiple origins of obsidian pyroclasts and implications for changes in the dynamics of the 1300 BP eruption of Newberry Volcano, USA. Bull Volcanol 69(8):825–845

    Article  Google Scholar 

  81. Schnurr W, Trumbull R, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25° to 27° S, 67° to 72° W. J Volcanol Geotherm Res 166:17–46

    Article  Google Scholar 

  82. Seggiaro R, Hongn F, Folguera A, Clavero J (2000) Hoja Geológica 2769 – II. Paso de San Francisco. Boletín 294. Programa Nacional de Cartas Geológicas. 1:250.000. SEGEMAR.

  83. Siebel W, Schnurr W, Hahne K, Kraemer B, Trumbull R, van den Bogaard P, Emmermann R (2001) Geochemistry and isotope systematic of small to medium volume Neogene Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–217

    Article  Google Scholar 

  84. Smith RL (1960) Zones and zonal variations in welded ash flows. USGS Professional Paper 354-F:149–158

    Article  Google Scholar 

  85. Sparks RSJ, Bonnecaze RT, Huppert HE, Lister JR, Hallworth MA, Mader H, Phillips J (1993) Sediment-laden gravity currents with reversing buoyancy. Earth Planet Sci Lett 114:243–257

    Article  Google Scholar 

  86. Sulpizio R, Dellino P (2008) Sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents. Developments in Volcanology 10:57–96

    Article  Google Scholar 

  87. Sulpizio R, Mele D, Dellino P, La Volpe L (2007) High variability of sedimentology and physical properties of pyroclastic density currents during complex Subplinian eruptions: the example of the AD 472 (Pollena) eruption of Somma–Vesuvius, Italy. Sedimentology 54:607–635

    Article  Google Scholar 

  88. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Article  Google Scholar 

  89. Trolese M, Giordano G, Cifelli F, Winkler A, Mattei M (2017) Forced transport of thermal energy in magmatic and phreatomagmatic large volume ignimbrites: paleomagnetic evidence from the Colli Albani volcano, Italy. Earth Planet Sci Lett 478:179–191

    Article  Google Scholar 

  90. Viramonte JG, Galliski MA, Araña Saavedra V, Aparício A, García Cucho L, Martín Escorza C (1984) El finivulcanismo básico de la depresión de Arizaro, provincia de Salta. Actas 9° Congreso Geológico Argentino 3: 234-251. Bariloche.

  91. Viramonte JG, Arnosio M, Becchio R, Gropelli G, Norini G, Corazzatto C, DiFillipo M, Blanco M, Eulillades P, Poodts M, Castro Godoy S, Klotz J, Asch G, Heit B (2005) Cerro Blanco volcanic complex: the youngest caldera system in the Southern Central Andes. A multidisciplinary Earth Science Project. 19° Colloquium on Latin American Geosciences. Potsdam. Terra Nostra (05/1): 19 LAK Postdam. 135 p.

  92. Viramonte JG, Arnosio M, Becchio R, de Silva S, Roberge J (2008) Cerro Blanco volcanic complex, Argentina: a late Pleistocene to Holocene rhyolitic arc –related caldera complex in the Central Andes. IAVCEI, General assembly Reykjavík, Islandia.

  93. Walker GP (1985) Origin of coarse lithic breccias near ignimbrite source vents. J Volcanol Geotherm Res 25(1-2):157–171

    Article  Google Scholar 

  94. Walker GPL, Heming RF, Wilson CJN (1980) Low aspect ratio ignimbrites. Nature 283:286–287

    Article  Google Scholar 

  95. Whelley PL, Calder ES, Wooller L (2017) The emplacement dynamics of pumice lobes ascertained from morphology and granulometry: examples from the 1993 deposits at Lascar Volcano, Chile. J Volcanol Geotherm Res 342:79–90

    Article  Google Scholar 

  96. Wilson CJN, Walker GP (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc 139(5):581–592

    Article  Google Scholar 

  97. Wilson CJN, Houghton BF, Kampt PJJ, McWilliamst MO (1995) An exceptionally widespread ignimbrite with implications for pyroclastic flow emplacement. Nature 378(6557):605–607

    Article  Google Scholar 

Download references

Acknowledgments

We thoroughly appreciate the thoughtful reviews by David Buesch, anonymous reviewer, and Associate Editor Joe Dufek. Their comments and concerns have helped us focus and improve our work significantly. Field discussions with Chuck Connor, Robert Constantinescu, Jan Lindsay, Daniel Bertin, and Pablo Caffe have been very useful.

Funding

This work was supported by the PICT (B)-2016-1359 grant (Dinámica de la erupción holocena más importante del sector sur de los Andes Centrales (erupción del Cerro Blanco, Puna Austral): Implicancias en la evaluación del riesgo volcánico en el Noroeste argentino) and by the PICT 2014-3436 (Petrogénesis de magmas vinculados a un sistema magmáticos de larga duración, Mioceno Medio -Holoceno, en el límite austral de la Puna. Complejos Volcánicos La Hoyada y Cerro Blanco, provincia de Catamarca). The fieldwork was carried out under the cooperation agreement between IBIGEO-CONICET and the Secretaría de Ambiente de la Provincia de Catamarca. de Silva acknowledges support from NASA grants MFRP NNX10AP79G and 16-SSW16_2-0141 and USA National Science Foundation grants EAR 0838536 and EAR 0908324 supported de Silva’s work here.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter Báez.

Additional information

Editorial responsibility: J. Dufek

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Báez, W., de Silva, S., Chiodi, A. et al. Pulsating flow dynamics of sustained, forced pyroclastic density currents: insights from a facies analysis of the Campo de la Piedra Pómez ignimbrite, southern Puna, Argentina. Bull Volcanol 82, 53 (2020). https://doi.org/10.1007/s00445-020-01385-5

Download citation

Keywords

  • Pyroclastic density currents
  • Sedimentation of ignimbrites
  • Cerro Blanco Volcanic Complex
  • Southern Puna