The evolution of Santa Maria Island in the context of the Azores Triple Junction

Abstract

Santa Maria is the oldest island in the Azores, formerly belonging to the Eurasia plate and currently the only one sitting on the Nubia Plate, thus sharing a geodynamic evolution with the Azores Triple Junction. It is therefore important to evaluate the effects of active tectonics on the evolution of Santa Maria, for example on its vertical movements. We present new stratigraphic, geomorphologic, structural and geochronological data from Santa Maria which shed further light on how a volcanic ocean island evolves in a tectonically active setting. Santa Maria island started with a first shield volcano (Old Volcanic Complex) that emerged ca. 6.0 Ma ago and was active until ca. 5.3 Ma. The short time span between the first and second shield volcanoes (ca. 0.3 Ma) and the preservation of only the western flank of this first shield volcano indicate an initial flank collapse at ca. 5 Ma. The collapse scar was covered by an eastwards dipping sedimentary complex (Intermediate Sedimentary Complex), with a likely tsunami deposit at the base. A second shield volcano (Young Volcanic Complex) rapidly grew on these sediments from 4.8 to 3.8 Ma, and the island subsided by more than 100 m. At 3.7 Ma, a second flank collapse occurred, as inferred from the missing summit and eastern flank. Volcanism then resumed (3.6 to 2.8 Ma), giving rise to Strombolian cones lying unconformably on the collapse scar and conformable parasitic cones on the unaffected flank. Submarine lavas occurring at up to 200 m altitude with a youngest age of 3.0 Ma indicate major uplift of the island since, at most, that time. Here we interpret uplift as the result of rift flank uplift on the southern shoulder of the nearby Terceira Rift in the last ca. 1.5 Ma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Abdel-Monem AA, Fernandez LA, Boone GM (1975) K-Ar ages from the eastern Azores group (Santa Maria, São Miguel and the Formigas Islands). Lithos 8:247–254

    Article  Google Scholar 

  2. Agostinho J (1937) Sobre a tectónica da ilha de Santa Maria. Açoreana 1:281–285

    Google Scholar 

  3. Ávila SP, Ramalho RS, Habermann JM, Titschack J (2018) The marine fossil record at Santa Maria Island (Azores). In: Kueppers U, Beier C (eds) Volcanoes of the Azores, active volcanoes of the world. Springer-Verlag GmbH, Germany. https://doi.org/10.1007/978-3-642-32226-6_9 part of springer nature 2018

    Google Scholar 

  4. Beier C, Mata J, Stöckhert F, Mattielli N, Brandl PA, Madureira P, Genske FS, Martins S, Madeira J, Haase KM (2013) Geochemical evidence for melting of carbonated peridotite on Santa Maria Island, Azores. Contrib Mineral Petrol 165:823–841. https://doi.org/10.1007/s00410-012-0837-2

    Article  Google Scholar 

  5. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. Chapman & Hall, London–New York–Tokyo–Melbourne–Madras 528 p

    Book  Google Scholar 

  6. Casalbore D, Romagnoli C, Pimentel A, Quartau R, Casas D, Ercilla G, Hipólito A, Sposato A, Chiocci FL (2015) Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bull Volcanol 77:24–19. https://doi.org/10.1007/s00445-015-0905-3

    Article  Google Scholar 

  7. Costa ACG, Marques FO, Hildenbrand A, Sibrant ALR, Catita CMS (2014) Large-scale flank collapses in a steep volcanic ridge: Pico-Faial Ridge, Azores Triple Junction. J Volcanol Geotherm Res 272:111–125

    Article  Google Scholar 

  8. Costa ACG, Hildenbrand A, Marques FO, Sibrant ALR, Santos de Campos A (2015) Catastrophic flank collapses and slumping in Pico Island during the last 130 kyr (Pico-Faial ridge, Azores Triple Junction). J Volcanol Geotherm Res 302:33–46

    Article  Google Scholar 

  9. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80

    Article  Google Scholar 

  10. Hildenbrand A, Marques FO, Catalão J, Catita CMS, Costa ACG (2012a) Large-scale active slump of the southeastern flank of Pico Island, Azores. Geology 40:939–942

    Article  Google Scholar 

  11. Hildenbrand A, Marques FO, Costa ACG, Sibrant ALR, Silva PF, Henry B, Miranda JM, Madureira P (2012b) Reconstructing the architectural evolution of volcanic islands from combined K/Ar, morphologic, tectonic, and magnetic data: the Faial Island example (Azores). J Volcanol Geotherm Res 241-242:39–48

    Article  Google Scholar 

  12. Hildenbrand A, Marques FO, Catalão J (2018) Large-scale mass wasting on small volcanic islands revealed by the study of Flores Island (Azores). Nat Sci Rep 8:13898. https://doi.org/10.1038/s41598-018-32253-0

    Article  Google Scholar 

  13. Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195

    Article  Google Scholar 

  14. Jones J, Nelson P (1970) The flow of basalt lava from air into water, its structural expression and stratigraphic significance. Geol Mag 107:13–19

    Article  Google Scholar 

  15. Luís JF, Miranda JM, Galdeano A, Patriat P, Rossignol JC, Mendes Victor LA (1994) The Azores triple junction evolution since 10 Ma from an aeromagnetic survey of the Mid-Atlantic Ridge. Earth Planet Sci Lett 125:439–459

    Article  Google Scholar 

  16. Madeira P, Kroh A, Martins AMF, Ávila SP (2007) The marine fossils from Santa Maria Island (Azores, Portugal): an historical overview. In: Ávila SP, Martins AMF (eds) Proceedings of the “1st Atlantic Islands Neogene”. International Congress, Ponta Delgada, 12–14 June 2006. Açoreana, Suplemento 5, pp 59–73

    Google Scholar 

  17. Marques FO, Cobbold PR (2002) Topography as a major factor in the development of arcuate thrust belts: insights from sandbox experiments. Tectonophysics 348:247–268

    Article  Google Scholar 

  18. Marques FO, Catalão JC, DeMets C, Costa ACG, Hildenbrand A (2013a) GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction. Earth Planet Sci Lett 381:177–187

    Article  Google Scholar 

  19. Marques FO, Sibrant ALR, Hildenbrand A, Costa ACG (2013b) Large-scale sector collapses in the evolution of Santa Maria Island, Azores. Abstract V51D-2719, AGU Fall Meeting

  20. Marques FO, Catalão JC, DeMets C, Costa ACG, Hildenbrand A (2014a) Corrigendum to “GPS and tectonic evidence for a diffuse plate boundary at the Azores Triple Junction” [Earth Planet. Sci. Lett. 381 (2013) 177–187]. Earth Planet Sci Lett 387:1–3

    Article  Google Scholar 

  21. Marques FO, Catalão J, Hildenbrand A, Costa ACG, Dias NA (2014b) The 1998 Faial earthquake, Azores: evidence for a transform fault associated with the Nubia-Eurasia plate boundary? Tectonophysics 633:115–125

    Article  Google Scholar 

  22. Marques FO, Catalão J, Hildenbrand A, Madureira P (2015) Ground motion and tectonics in the Terceira Island: tectonomagmatic interactions in an oceanic rift (Terceira Rift, Azores Triple Junction). Tectonophysics 651-652:19–34

    Article  Google Scholar 

  23. Marques FO, Hildenbrand A, Zanon V, Boulesteix T (2016) Comment on “The insular shelves of the Faial-Pico Ridge (Azores archipelago): a morphological record of its evolution” by Quartau et al. (2015). Geochem Geophys Geosyst 17:625–632

    Article  Google Scholar 

  24. Marques FO, Hildenbrand A, Hübscher C (2018) Evolution of a volcanic island on the shoulder of an oceanic rift and geodynamic implications: S. Jorge Island on the Terceira Rift, Azores Triple Junction. Tectonophysics 738-739:41–50

    Article  Google Scholar 

  25. Marques FO, Hildenbrand A, Victória SS, Cunha C, Dias P (2019) Caldera or flank collapse in the Fogo volcano? What age? Consequences for risk assessment in volcanic islands. J Volcanol Geotherm Res 388:106686. https://doi.org/10.1016/j.jvolgeores.2019.106686

    Article  Google Scholar 

  26. Marques FO, Hildenbrand A, Zeyen H, Cunha C, Victória SS (2020) The complex vertical motion of intraplate oceanic islands assessed in Santiago Island, Cape Verde. Geochem Geophys Geosyst 21:e2019GC008754. https://doi.org/10.1029/2019GC008754

    Article  Google Scholar 

  27. Miller K, Kominz M, Browning J, Wright J, Mountain G, Katz M, Sugarman P, Cramer B, Christie-Blick N, Pekar S (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  Google Scholar 

  28. Miranda JM, Luis JF, Lourenço N, Goslin J (2014) Distributed deformation close to the Azores Triple “Point”. Mar Geol 355:27–35

    Article  Google Scholar 

  29. Mitchell NC (2003) Susceptibility of mid-ocean ridge volcanic islands and seamounts to large-scale landsliding. J Geophys Res 108:2397. https://doi.org/10.1029/2002JB001997

    Article  Google Scholar 

  30. Porebski S, Gradzinski R (1990) Lava-fed Gilbert-type delta in the Polonez Cove Formation (Lower Oligocene), King George Island, West Antarctica. In: Colella A, Prior D (eds) Coarse grained deltas. Int Assoc Sedimentol Spec Publ 10:335–351

  31. Quartau R, Tempera F, Mitchell NC, Pinheiro LM, Duarte H, Brito PO, Bates R, Monteiro JH (2012) Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes. Geochem Geophys Geosyst 13:Q04012. https://doi.org/10.1029/2011GC003987

    Article  Google Scholar 

  32. Quartau R, Hipólito A, Romagnoli C, Casalbore D, Madeira J, Tempera F, Roque C, Chiocci FL (2014) The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: insights from Terceira Island (Azores). Geochem Geophys Geosyst 15:1801–1826

    Article  Google Scholar 

  33. Quartau R, Madeira J, Mitchell NC, Tempera F, Silva PF, Brandão F (2015) The insular shelves of the Faial-Pico Ridge: a morphological record of its geologic evolution (Azores archipelago). Geochem Geophys Geosyst 16:1401–1420

    Article  Google Scholar 

  34. Ramalho RS, Helffrich G, Cosca M, Vance D, Hoffmann D, Schmidt DN (2010a) Vertical movements of ocean island volcanoes: insights from a stationary plate environment. Mar Geol 275:84–95

    Article  Google Scholar 

  35. Ramalho R, Helffrich G, Cosca M, Vance D, Hoffmann D, Schmidt DN (2010b) Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands. Nat Geosci 3:774–777

    Article  Google Scholar 

  36. Ramalho R, Helffrich G, Schmidt DN, Vance D (2010c) Tracers of uplift and subsidence in the Cape Verde archipelago. J Geol Soc Lond 167:519–538

    Article  Google Scholar 

  37. Ramalho RS, Quartau R, Trenhaile AS, Mitchell NC, Woodroffe CD, Avila SP (2013) Coastal evolution on volcanic oceanic islands: a complex interplay between volcanism, erosion, sedimentation, sealevel change and biogenic production. Earth Sci Rev 127:140–170

    Article  Google Scholar 

  38. Ramalho RS, Helffrich G, Madeira J, Cosca M, Thomas C, Quartau R, Hipólito A, Rovere A, Hearty PJ, Ávila SP (2017) Emergence and evolution of Santa Maria Island (Azores): the conundrum of uplifted islands revisited. Geol Soc Am Bull 129:372–390

    Article  Google Scholar 

  39. Ricchi A, Quartau R, Ramalho RS, Romagnoli C, Casalbore D, Cruz JV, Fradique C, Vinhas A (2018) Marine terrace development on reefless volcanic islands: new insights from high-resolution marine geophysical data offshore Santa Maria Island (Azores Archipelago). Mar Geol 406:42–56

    Article  Google Scholar 

  40. Serralheiro A (2003) A Geologia da ilha de Santa Maria, Açores. Açoreana 10:141–192

    Google Scholar 

  41. Serralheiro A, Madeira J (1993) Stratigraphy and geochronology of Santa Maria Island (Azores). Açoreana 7:575–592

    Google Scholar 

  42. Serralheiro A, Alves CAM, Forjaz VH, Rodrigues B (1987) Carta vulcanológica dos Açores: ilha de Santa Maria. Edição do Serv. Reg. Protecção Civil (Região Autónoma dos Açores), Ponta Delgada, 1ª ed., 2 folhas

  43. Sibrant ALR, Marques FO, Hildenbrand A (2014) Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores. J Volcanol Geotherm Res 284:32–45

    Article  Google Scholar 

  44. Sibrant ALR, Hildenbrand A, Marques FO, Costa ACG (2015a) Volcano-tectonic evolution of the Santa Maria Island (Azores): implications for palaeostress evolution at the western Eurasia-Nubia plate boundary. J Volcanol Geotherm Res 291:49–62

    Article  Google Scholar 

  45. Sibrant ALR, Hildenbrand A, Marques FO, Weiß B, Boulesteix T, Hübscher C, Lüdmann T, Costa ACG, Catalão JC (2015b) Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores). J Volcanol Geotherm Res 301:90–106

    Article  Google Scholar 

  46. Sibrant ALR, Marques FO, Hildenbrand A, Boulesteix T, Costa ACG, Catalão J (2016) Deformation in a hyperslow oceanic rift: insights from the tectonics of the São Miguel Island (Terceira Rift, Azores). Tectonics 35:425–446

    Article  Google Scholar 

  47. Trippanera D, Porreca M, Ruch J, Pimentel A, Acocella V, Pacheco J, Salvatore M (2014) Relationships between tectonics and magmatism in a transtensive/transform setting: an example from Faial Island (Azores, Portugal). GSA Bull 126:164–181. https://doi.org/10.1130/B30758.1

    Article  Google Scholar 

  48. Turcotte DL, Schubert G (2014) Geodynamics, 3rd edn. Cambridge University Press 636 pp

  49. Vogt P, Jung W (2004) The Terceira Rift as hyper-slow, hotspot-dominated oblique spreading axis: a comparison with other slow-spreading plate boundaries. Earth Planet Sci Lett 218:77–90

    Article  Google Scholar 

  50. Weiß BJ, Hübscher C, Lüdmann T, Serra N (2016) Submarine sedimentation processes in the southeastern Terceira Rift/São Miguel region (Azores). Mar Geol 374:42–58

    Article  Google Scholar 

  51. Weissel JK, Karner GD (1989) Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. J Geophys Res 94:13919–13950

    Article  Google Scholar 

  52. Zbyszewski G, Ferreira OV (1960) Carta geológica de Portugal, Ilha de Santa Maria (Açores), scale 1:50 000. Serviço Geológico de Portugal

Download references

Acknowledgements

This is a contribution to Project MEGAHazards2 (PTDC/GEO-GEO/0946/2014) funded by FCT Portugal. A. Costa benefitted from a scholarship (SFRH/BD/68983/2010) funded by FCT Portugal, and A.L.R. Sibrant was supported by postdoctoral grant of the “Laboratoire d’Excellence” LabexMER. A special thanks is due to João Batista, who took us by boat all around the island to carry out critical field work. We thank three anonymous reviewers and the Executive and Associate Editors Andrew Harris and Valerio Acocella, respectively, for their constructive and helpful reviews and editorial work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. O. Marques.

Additional information

Editorial responsibility: V. Acocella

Electronic supplementary material

Fig. S-1

(JPG 147 kb)

Fig. S-2

(JPG 345 kb)

Fig. S-3

(JPG 748 kb)

Fig. S-4

(JPG 287 kb)

Fig. S-5

(JPG 1.78 MB)

Fig. S-6

(JPG 4.78 MB)

Fig. S-7

(JPG 4.97 MB)

Fig. S-8

(JPG 3.80 MB)

Fig. S-9

(JPG 333 kb)

Fig. S-10

(JPG 2.10 MB)

Fig. S-11

(JPG 3.46 MB)

ESM 12

(DOCX 28.1 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marques, F.O., Hildenbrand, A., Costa, A.C.G. et al. The evolution of Santa Maria Island in the context of the Azores Triple Junction. Bull Volcanol 82, 39 (2020). https://doi.org/10.1007/s00445-020-01378-4

Download citation

Keywords

  • Santa Maria Island
  • Azores Triple Junction
  • Large-scale mass wasting
  • Flank collapse
  • Island subsidence and uplift
  • Age fossils