Bulletin of Volcanology

, 81:59 | Cite as

The ~ AD 500–700 (Late Classic) El Astillero and El Pedregal volcanoes (Michoacán, Mexico): a new monogenetic cluster in the making?

  • Patricia LarreaEmail author
  • Claus Siebe
  • Erick Juárez-Arriaga
  • Sergio Salinas
  • Héctor Ibarra
  • Harald Böhnel
Research Article


The recent identification of Holocene volcanic clusters in small areas within the Michoacán Guanajuato Volcanic Field (MGVF) opens several questions regarding future volcanic hazard assessments in this region. Documenting vent alignments and eruption recurrence intervals within clusters will provide parameters necessary for making temporal and spatial hazard evaluations. Here, we present a possible new case of a small cluster consisting of only two monogenetic volcanoes, El Astillero and El Pedregal located in the ~ 4400-km2 Tancítaro-Nueva Italia region in the southwestern part of the MGVF, only 25 km to the south of Paricutin volcano. We determined from paleomagnetic and radiocarbon dating that El Astillero and El Pedregal most likely erupted one after the other between AD 500 and 700 (within the Late Classic period of Mesoamerican archeology). While the eruptions were likely separated by a short period of time, the exact length is difficult to ascertain. After the ~ 6 years of total estimated eruption duration of the two volcanoes, both together occupied an area of 14.7 km2 and emitted a dense rock equivalent (DRE) volume of magma of ~ 0.5 km3. Notable characteristics of the eruptions include a switch from the explosive activity exclusive of El Astillero (Strombolian) to effusive activity early after the initiation of the El Astillero eruption, a shift in the active vents, and a progressive change in the bulk magma composition from basaltic andesite to andesite throughout the duration of the eruption. This activity first formed the El Astillero scoria cone and tephra deposits followed by its lava field and ended with the emplacement of the El Pedregal viscous lavas. The discovery of pre-Hispanic pottery sherds and obsidian artifacts underneath the El Astillero tephra fallout unambiguously attests to human activities in the area before the eruption. Judging by their eruptive style, the eruptions probably had a limited impact on the small area affected and the surrounding human activities, but the hazard for this area remains since El Astillero and El Pedregal could represent the initial stages of a new cluster that is still in the making. If so, another eruption should be expected in this area again.


Monogenetic cluster Holocene Radiocarbon dating Paleomagnetic dating Archeology Volumetric estimations 



Jorge Escalante supported rock magnetic measurements and Emilio Nava supported the functionality of the computer network in the paleomagnetic laboratory. Capitán Fernando Valencia is thanked for skillful and safe flights over the study area. Gregory Pereira (Sorbonne University, Paris) kindly provided advice in regard to archeological questions. The personnel of Protección Civil and Miguel Equihua (Desarrollo Rural y Ecología) of the municipality of Tancítaro are thanked for always being kind and helpful in coordinating fieldwork activities. Associate Editor Christopher Gregg and Executive Editor Andrew Harris are warmly thanked for comments, suggestions, and editorial handling; Karoly Nemeth and one anonymous reviewer are thankfully acknowledged for their constructive reviews, which led to great improvement of the manuscript.

Funding information

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT-167231) and Dirección General de Asuntos del Personal Académico (UNAM-DGAPA IN-103618) granted to C. Siebe. Patricia Larrea was supported by UNAM-DGAPA postdoctoral fellowship (2018-2019).

Supplementary material

445_2019_1318_MOESM1_ESM.docx (22 kb)
Online Resource 1 (DOCX 22.2 kb)
445_2019_1318_MOESM2_ESM.xlsx (22 kb)
Online Resource 2 (XLSX 22 kb)
445_2019_1318_MOESM3_ESM.docx (4.4 mb)
Online Resource 3 (DOCX 4492 kb)
445_2019_1318_MOESM4_ESM.xlsx (13 kb)
Online Resource 4 (XLSX 13 kb)


  1. Arnauld C, Carot P, Fauvet-Berthelot MF (1993) Arqueología de Las Lomas en la cuenca lacustre de Zacapu, Michoacán, México. Céntre d’Études Mexicaines et Centroaméricaines, México. Cuadernos de Estudios Michoacanos 5, 230 ppGoogle Scholar
  2. Ban M, Hasenaka T, Delgado-Granados H, Takaoka N (1992) K-Ar ages of lavas from shield volcanoes in the Michoacan-Guanajuato volcanic field, Mexico. Geofis Int 31(4):467–473Google Scholar
  3. Beekman CR (2010) Recent research in western Mexican archaeology. J Archaeol Res 18:41–109CrossRefGoogle Scholar
  4. Böhnel H, Pavon-Carrasco FJ, Sieron K, Mahgoub AN (2016) Palaeomagnetic dating of two recent lava flows from Ceboruco volcano, western Mexico. Geophys J Int 207:1203–1215CrossRefGoogle Scholar
  5. Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of the intermediate magmatism in west-central (105°-99°W) Mexico. Contrib Mineral Petrol 143(6):641–663CrossRefGoogle Scholar
  6. Cashman KV (2004) Volatile controls on magma ascent and eruption, in The State of the Planet: Frontiers and Challenges in Geophysics (eds R.S.J. Sparks and C.J. Hawkesworth), American Geophysical Union, Washington, D.C. doi:
  7. Cervantes P, Wallace P (2003) Magma degassing and basaltic eruption styles: a case study of 2000 year BP Xitle volcano in Central Mexico. J Volcanol Geotherm Res 120:249–270CrossRefGoogle Scholar
  8. Chesley J, Ruiz J, Righter K, Ferrari L, Gómez-Tuena A (2002) Source contamination versus assimilation: an example from the Trans-Mexican Volcanic Arc. Earth Planet Sci Lett 195(3):211–221CrossRefGoogle Scholar
  9. Chevrel MO, Guilbaud M-N, Siebe C (2016a) The ~AD 1250 effusive eruption of El Metate shield volcano (Michoacán, México): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78:1–28CrossRefGoogle Scholar
  10. Chevrel MO, Siebe C, Guilbaud M-N, Salinas S (2016b) The AD 1250 El Metate shield volcano (Michoacán): Mexico’s most voluminous Holocene eruption and its significance for archeology and hazards. The Holocene 26(3):471–488CrossRefGoogle Scholar
  11. Connor CB (1987) Structure of the Michoacán-Guanajuato volcanic field, Mexico. J Volcanol Geotherm Res 33:191–200CrossRefGoogle Scholar
  12. Connor CB (1990) Cinder cone clustering in the Trans-Mexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res 95(B12):19395–19405CrossRefGoogle Scholar
  13. Connor CB, Condit CD, Crumpler LS, Aubele JC (2012) Evidence of regional structural controls on vent distribution: Springerville volcanic field, Arizona. J Geophys Res Solid Earth 97(B9):12349–12359CrossRefGoogle Scholar
  14. Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26(7):655–658CrossRefGoogle Scholar
  15. Deligne NI, Conrey RM, Cashman KV, Champion DE, Amidon WH (2016) Holocene volcanism of the upper McKenzie River catchment, Central Oregon cascades, USA. Bull Geol Soc Am 128(11/12):1618–1635. CrossRefGoogle Scholar
  16. Di Traglia F, Morelli S, Casagli N, Garduño-Monroy VH (2014) Semi-automatic delimitation of volcanic edifice boundaries: validation and application to the cinder cones of the Tancitaro–Nueva Italia region (Michoacán–Guanajuato volcanic field, Mexico). Geomorphol 219:152–160CrossRefGoogle Scholar
  17. Faugere B (2006) Cueva de los Portales: Un sitio arcaico del norte de Michoacán, México. Colección Científica. CEMCA-INAH, MéxicoGoogle Scholar
  18. Fisher, CT, Leisz, SJ (2013) New perspectives on Purépecha urbanism through the use of LiDAR at the site of Angamuco. In: Comer, D.C., Harrower, M.J. (Eds.) Mapping archaeological landscapes from space. Springer Briefs in Archaeology: 199–210Google Scholar
  19. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer-Verlag, Berlin, p 472CrossRefGoogle Scholar
  20. Fisher CT, Cohen AS, Fernández-Diaz JC, Leisz SJ (2017) The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. Quat Int 448:129–138CrossRefGoogle Scholar
  21. Foshag WF, González-Reyna J (1956) Birth and development of Parícutin volcano, Mexico. US Geol Surv Bull 965D:355–485Google Scholar
  22. Guilbaud MN, Siebe C, Salinas S (2009) Excursions to Paricutin and Jorullo (Michoacán), the youngest volcanoes of the Trans-Mexican Volcanic Belt. A commemorative fieldtrip on the occasion of the 250th anniversary of Volcán Jorullo’s birthday on September 29, 1759. Impretei S.A., México, D.F., 31 pGoogle Scholar
  23. Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduño-Monroy VH, Corvec NL (2011) Geology, geochronology, and tectonic setting of the Jorullo volcano region, Michoacán, México. J Volcanol Geotherm Res 201(1–4):97–112CrossRefGoogle Scholar
  24. Guilbaud M-N, Siebe C, Layer P, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74(5):1187–1211CrossRefGoogle Scholar
  25. Harris AJ, Rowland SK, Villeneuve N, Thordarson T (2017) Pāhoehoe, ‘a ‘ā, and block lava: an illustrated history of the nomenclature. Bull Volcanol 79(1):7CrossRefGoogle Scholar
  26. Hasenaka T (1992) Contrasting volcanism in the Michoacán-Guanajuato volcanic field, Central Mexico: shield volcanoes vs. cinder cones. In: Aoki, K (ed) Subduction volcanism and tectonics of Western Mexican Volcanic Belt: Sendai, Japan, Tohoku University, 248 pGoogle Scholar
  27. Hasenaka T, Carmichael ISE (1985a) A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. Geofis Int 24:577–607Google Scholar
  28. Hasenaka T, Carmichael ISE (1985b) The cinder cones of Michoacán-Guanajuato, Central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25:105–124CrossRefGoogle Scholar
  29. Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, Central Mexico: petrology and chemistry. J Petrol 28:241–269CrossRefGoogle Scholar
  30. Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing system. In: Annen C, Zellmer GF (eds) Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society London Special Publications 304:133-148Google Scholar
  31. Johnson CA, Harrison CGA (1990) Neotectonics in Central Mexico. Phys Earth Planet Inter 64:187–210CrossRefGoogle Scholar
  32. Johnson ER, Wallace PJ, Delgado Granados H, Manea VC, Kent AJ, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50(9):1729–1764CrossRefGoogle Scholar
  33. Johnson ER, Wallace PJ, Cashman KV, Granados HD (2010) Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in Central Mexico. J Volcanol Geotherm Res 197(1–4):225–238CrossRefGoogle Scholar
  34. Juárez-Arriaga E, Böhnel H, Carrasco-Núñez G, Mahgoub AN (2018) Paleomagnetism of Holocene lava flows from Los Humeros caldera, eastern Mexico: discrimination of volcanic eruptions and their age dating. J S Am Earth Sci 88:736–748CrossRefGoogle Scholar
  35. Kim Y, Miller MS, Pearce F, Clayton RW (2012) Seismic imaging of the Cocos plate subduction zone system in Central Mexico. Geochem Geophys Geosyst 13(7):Q07001. CrossRefGoogle Scholar
  36. Kshirsagar P, Siebe C, Guilbaud M-N, Salinas S, Layer PW (2015) Late Pleistocene Alberca de Guadalupe maar volcano (Zacapu basin, Michoacán): stratigraphy, tectonic setting, and paleohydrogeological environment. J Volcanol Geotherm Res 304:214–236. CrossRefGoogle Scholar
  37. Kshirsagar P, Siebe C, Guilbaud MN, Salinas S (2016) Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). J Volcanol Geotherm Res 318:114–133. CrossRefGoogle Scholar
  38. Larrea P, Salinas S, Widom E, Siebe C, Abbitt RJF (2017) Compositional and volumetric development of a monogenetic lava flow field: the historical case of Paricutin (Michoacan, Mexico). J Volcanol Geotherm Res 348:36–48CrossRefGoogle Scholar
  39. Larrea P, Widom E, Siebe C, Salinas S, Kuentz D (2019) A re-interpretation of the petrogenesis of Paricutin volcano: distinguishing crustal contamination from mantle heterogeneity. Chem Geol 504:66–82. CrossRefGoogle Scholar
  40. Le Bas M, Maitre RL, Streckeisen A, Zanettin B (1986) IUGS subcommission on the systematics of igneous rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  41. Le Corvec N, Spörl KB, Rowland J, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth Sci Rev 124:96–114CrossRefGoogle Scholar
  42. Leonhardt R, Heunemann C, Krasa D (2004) Analyzing absolute paleointensity determinations: acceptance criteria and the software ThellierTool4.0. G-cubed 5:1–11. CrossRefGoogle Scholar
  43. Lipman PW, Banks NG (1987) AA flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567Google Scholar
  44. Luhr JF, Simkin T (1993) Paricutin: the volcano born in a Mexican cornfield. Geoscience Press, 427 ppGoogle Scholar
  45. Mahgoub AN, Böhnel H, Siebe C, Salinas S, Guilbaud M-N (2017a) Paleomagnetically inferred ages of a cluster of Holocene monogenetic eruptions in the Tacámbaro-Puruarán area (Michoacán, México): implications for volcanic hazards. J Volcanol Geotherm Res 347:360–370. CrossRefGoogle Scholar
  46. Mahgoub AN, Böhnel H, Siebe C, Chevrel MO (2017b) Paleomagnetic study of El Metate shield volcano (Michoacán, Mexico) confirms its monogenetic nature and young age (~AD 1250). J Volcanol Geotherm Res 336:209–218. CrossRefGoogle Scholar
  47. Mahgoub AN, Reyes-Guzmán N, Böhnel H, Siebe C, Pereira G, Dorison A (2018) Paleomagnetic constraints on the ages of the Holocene Malpaís de Zacapu lava flow eruptions, Michoacán (Mexico): implications for archeology and volcanic hazards. The Holocene 28(2):229–245CrossRefGoogle Scholar
  48. Mahgoub AN, Juárez-Arriaga E, Böhnel H, Siebe C, Pavón-Carrasco FJ (2019) Late-Quaternary secular variation data from Mexican volcanoes. Earth Planet Sci Lett 519:28–39CrossRefGoogle Scholar
  49. Martí J, López C, Bartolini S, Becerril L, Geyer A (2016) Stress controls of monogenetic volcanism: a review. Front Earth Sci 4:1–17CrossRefGoogle Scholar
  50. Michelet D (1993) El Centro-Norte de Michoacán: características generales de su estudio regional. In: Michelet D (ed) El Proyecto Michoacán 1983–1987. Medio ambiente e introducción a los trabajos arqueológicos. CEMCA, México, pp 9–52Google Scholar
  51. Michelet D (1998) Topografía y prospección sistemática de los grandes asentamientos del Malpaís de Zacapu: claves para un acercamiento a las realidades sociopolíticas. In: Darras V (ed) Génesis, culturas y espacios en Michoacán. CEMCA, México, pp 47–59. CrossRefGoogle Scholar
  52. Morelli S, Monroy VH, Gigli G, Falorni G, Rocha EA, Casagli N (2010) The Tancitaro debris avalanche: characterization, propagation and modeling. J Volcanol Geotherm Res 193(1–2):93–105CrossRefGoogle Scholar
  53. Nolan ML (1979) Impact of Paricutin on five communities. In: Sheets PD, Grayson DK (eds) Volcanic activity and human ecology. Academic Press, New York, pp 293–338CrossRefGoogle Scholar
  54. O’Reilly W (1984) Rock and mineral magnetism. Chapman and Hall, 220 ppGoogle Scholar
  55. Ownby S, Granados HD, Lange RA, Hall CM (2007) Volcán Tancítaro, Michoacán, Mexico, 40 Ar/39 Ar constraints on its history of sector collapse. J Volcanol Geotherm Res 161(1):1–14CrossRefGoogle Scholar
  56. Ownby SE, Lange RA, Hall CM, Delgado-Granados H (2011) Origin of andesite in the deep crust and eruption rates in the Tancítaro–Nueva Italia region of the central Mexican arc. Geol Soc Am Bull 123(1–2):274–294CrossRefGoogle Scholar
  57. Pacheco JF, Valdés-González C, Delgado-Granados H, Singh SK, Zúñiga R, Mortera-Gutiérrez CA, Santoyo MA, Domínguez J, Barrón R (1999) Tectonic implications of the earthquake swarm of 1997 in the Michoacán triangle, Mexico. J S Am Earth Sci 12:567–577CrossRefGoogle Scholar
  58. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions-IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121(1):226–232CrossRefGoogle Scholar
  59. Pavón-Carrasco FJ, Osete ML, Torta JM, De Santis A (2014) A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet Sci Lett 388:98–109. CrossRefGoogle Scholar
  60. Pereira G, Padilla-Gutiérrez EF (2018) La Ciudad Perdida. Raíces de los Soberanos Tarascos. Ediciones del Museo Nacional de Antropología, Co-editión INAH/CEMCA, México, 122 p. ISBN-978-607-539-117-5Google Scholar
  61. Pérez-López R, Legrand D, Garduño-Monroy VH, Rodríquez-Pascua MA, Giner-Robles JL (2011) Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guajajuato volcanic field (Mexico). J Volcanol Geotherm Res 201:65–72CrossRefGoogle Scholar
  62. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56(2):108–120CrossRefGoogle Scholar
  63. Pola A, Macías JL, Garduño-Monroy VH, Osorio-Ocampo S, Cardona-Melchor S (2014) Successive collapses of the el Estribo volcanic complex in the Pátzcuaro Lake, Michoacán, Mexico. J Volcanol Geotherm Res 289:41–50CrossRefGoogle Scholar
  64. Polacci M, Papale P (1997) The evolution of lava flows from ephemeral vents at Mount Etna: insights from vesicle distribution and morphological studies. J Volcanol Geotherm Res 76(1–2):1–17CrossRefGoogle Scholar
  65. Pollard HP (1993) Tariácuri’s legacy. The Prehispanic Tarascan state. University of Oklahoma press, NormanGoogle Scholar
  66. Pollard HP (2011) Una larga caminata: el análisis regional dentro de la arqueología tarasca. In: Williams E, Weigand PC (eds) Patrones de asentamiento y actividades de subsistencia en el Occidente de México. Zamora, Colegio de Michoacán, pp 21–34Google Scholar
  67. Punzo-Díaz JL, Martínez-Vázquez DB (2018) La Cueva de los Hacheros: Un probable sitio del Pleistoceno Tardío y Holoceno Temprano, Michoacán, México. Arqueología Iberoamericana 40:3–8Google Scholar
  68. Ramírez-Uribe I (2017) Geología y aspectos arqueológicos del volcán monogenético Rancho Seco y estructuras volcánicas vecinas (Michoacán, México). Bachelor Thesis, Ciudad de México, Universidad Nacional Autónoma de México, p 31Google Scholar
  69. Rasoazanamparany C, Widom E, Siebe C, Guilbaud M-N, Spicuzza MJ, Valley JW, Valdez G, Salinas S (2016) Temporal and compositional evolution of Jorullo volcano, Mexico: implications for magmatic processes associated with a monogenetic eruption. Chem Geol 434:62–80CrossRefGoogle Scholar
  70. Rees JD (1979) Effects of the eruption of Paricutin volcano on landforms, vegetation, and human occupancy. In: Sheets PD, Grayson DK (eds) Volcanic activity and human ecology. Academic Press, New York, pp 249–292CrossRefGoogle Scholar
  71. Reyes-Guzmán N, Siebe C, Chevrel MO, Guilbaud MN, Salinas S, Layer P (2018) Geology and radiometric dating of quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archaeology and future hazard evaluations. Bull Volcanol 80:18CrossRefGoogle Scholar
  72. Rowland SK, Jurado-Chichay Z, Ernst G, Walker GP (2009) Pyroclastic deposits and lava flows from the 1759–1774 eruption of El Jorullo, Mexico: Aspects of ‘violent Strombolian’activity and comparison with Parícutin. Studies in Volcanology: the Legacy of George Walker. IAVCEI, Special Publications 2:105–28.Google Scholar
  73. Siebe C, Guilbaud M-N, Salinas S, Kshirsagar P, Chevrel MO, De la Fuente JR, Hernández-Jiménez A, Godínez L (2014) Monogenetic volcanism of the Michoacán-Guanajuato volcanic field: Maar craters of the Zacapu basin and domes, shields, and scoria cones of the Tarascan highland (Paracho-Paricutin region). In: Field guide, Pre-meeting Fieldtrip for the 5th International Maar Conference (5IMC-IAVCEI). Querétaro, 13–17 November, 33 ppGoogle Scholar
  74. Siebe C, Reyes N, Guilbaud MN, Salinas S, Mahgoub AN, Böhnel H, Chevrel OM, Kshirsagar PV, Larrea P (2018) Historia del vulcanismo reciente en Michoacán y sus implicaciones para los asentamientos humanos. Coloquio internacional: movilidades, territorios y cambios sociopolíticos en el centro-oeste de México. Museo Nacional de Antropología, Ciudad de México, Mexico, April 23-25 2018, Abstracts, p. 3-5Google Scholar
  75. Smith IEM, Németh K (2017) Source to surface model of monogenetic volcanism: a critical review. Geol Soc Lond Spec Publ 446:1–28CrossRefGoogle Scholar
  76. Tauxe L, Staudigel H (2004) Strength of the geomagnetic field in the cretaceous normal superchron: new data from submarine basaltic glass of the Troodos ophiolite. Gcubed 5:1–16. CrossRefGoogle Scholar
  77. Valentine GA, Connor CB (2015) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt S, Rymer H, Stix J (Eds) The Encyclopedia of Volcanoes (2nd Edition), pp. 423-439Google Scholar
  78. Verma SP, Hasenaka T (2004) Sr, Nd, and Pb isotopic and trace element geochemical constraints for a veined-mantle source of magmas in the Michoacan-Guanajuato volcanic field, west-central Mexican volcanic belt. Geochem J 38(1):43–65CrossRefGoogle Scholar
  79. Watts WA, Bradbury JP (1982) Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat Res 17(1):56–70CrossRefGoogle Scholar
  80. Yu Y, Dunlop DJ, Özdemir Ö, Ueno H (2001) Magnetic properties of Kurokami pumices from Mt. Sakurajima, Japan. Earth Planet Sci Lett 192(3):439–446CrossRefGoogle Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.Department of Geology and Andean Geothermal Center of Excellence (CEGA), Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Department of Geology & Environmental Earth ScienceMiami UniversityOxfordUSA
  3. 3.Departamento de Vulcanología, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  4. 4.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  5. 5.Facultad de Ingeniería, División de Ingeniería en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations