Skip to main content
Log in

Magmatic reactivation of the Campi Flegrei volcanic system: insights from the Baia–Fondi di Baia eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Baia–Fondi di Baia was a multi-stage, small-scale eruption which occurred in the western part of the Campi Flegrei caldera at 9525–9696 BP, marking the onset of Epoch 2 of post-Neapolitan Yellow Tuff volcanism. The eruption was characterized by a complex series of events related to two distinct eruptive episodes (Baia and Fondi di Baia) separated by a short time interval, and each characterized by several eruptive phases. Mineralogical, geochemical (major, and trace elements on whole rocks, major and volatile elements on matrix glasses, and melt inclusions), and Sr isotope characterization of the tephra material sampled along the entire sequence was carried out in order to constrain magmatic evolution and dynamics of the feeding system. Three main compositional groups were identified in matrix glasses and interpreted as representative of different magma bodies: (i) a trachyte (SiO2 60.3–64.7 wt.%), which is volumetrically predominant; (ii) a tephriphonolite-latite (SiO2: 55.1–57.9 wt.%); and (iii) an intermediate magma group between phonolite and trachyte compositions. This wide compositional heterogeneity contrasts with the narrow variability recognized in the bulk-rock compositions, which are all trachytic. Mineral, melt inclusions, and Sr isotope data suggest that the trachytic magma possibly derived from the Campanian Ignimbrite reservoir located at 6–9 km depth. Volatile content in matrix glass indicates a storage depth of at least 6 km for the tephriphonolite-latitic magma. The intermediate magma is interpreted as being derived from a remelting and assimilation process of a partially crystallized trachytic body (crystal mush) by the hotter tephriphonolite-latitic magma. As the tephriphonolite-latite was erupted together with the trachyte from the beginning of the eruption, we suggest that the ascent of this magma played a fundamental role in triggering the eruption. Upwards through the tephra sequence, we observed a progressive increase of the tephriphonolite-latitic and intermediate phonolite-trachytic components. The presence of banded clasts characterized by different compositions is also indicative of syn-eruptive mingling during the final phases of the eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acocella V (2007) Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth Sci Rev 85:125–160. https://doi.org/10.1016/j.earscirev.2007.08.004.

    Article  Google Scholar 

  • Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78

    Article  Google Scholar 

  • Anderson AT, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl, and gas in Plinian and ash-flow bishop rhyolite. Geology 17(3):221–225

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte spina eruption (Campi Flegrei, Italy): dragging the past into the present activity and future scenarios. Chem Geol 270(1–4):135–147

    Article  Google Scholar 

  • Arienzo I, Mazzeo FC, Moretti R, Cavallo A, D'Antonio M (2016) Open-system magma evolution and fluid transfer at Campi Flegrei caldera (Southern Italy) during the past 5 ka as revealed by geochemical and isotopic data: The example of the Nisida eruption. Chem Geol 427:109–124. https://doi.org/10.1016/j.chemgeo.2016.02.007

  • Audétat A, Lowenstern JB (2014) Melt inclusions. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 143–173

    Chapter  Google Scholar 

  • Balcone-Boissard H, Boudon G, Cioni R, Webster JD, Zdanowicz G, Orsi G, Civetta L (2016) Chlorine as a geobarometer for alkaline magmas: evidence from a systematic study of the eruptions of mount Somma-Vesuvius. Sci Rep 6:21726. https://doi.org/10.1038/srep21726

    Article  Google Scholar 

  • Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegrean fields case history. Atti Conv Lincei 80:387–405

    Google Scholar 

  • Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegrean fields 1982-1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185

    Article  Google Scholar 

  • Bevilacqua A, Isaia R, Neri A, Vitale S, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Esposti Ongaro T, Iannuzzi E, Pistolesi M, Rosi M (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J Geophys Res Solid Earth 120:2309–2329

    Article  Google Scholar 

  • Bevilacqua A, Neri A, Bisson M, Esposti Ongaro T, Flandoli F, Isaia R, Rosi M, Vitale S (2017) The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy). Front Earth Sci 5(72):1–16. https://doi.org/10.1142/p156

    Article  Google Scholar 

  • Bosworth W, Burke K, Strecker M (2003) Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics 22(1042). https://doi.org/10.1029/2002TC001369

  • Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli1 eruptions at Campi Flegrei (Italy). Chem Geol 237(3–4):418–443

    Article  Google Scholar 

  • Cashman KV, Giordano G (2014) Calderas and magma reservoirs. J Volcanol Geotherm Res 288:28–45. https://doi.org/10.1016/j.jvolgeores.2014.09.007

    Article  Google Scholar 

  • Chiodini G, Vandemeulebrouck J, Caliro S, D'Auria L, De Martino P, Mangiacapra A, Petrillo Z (2015) Evidence of thermal-driven processes triggering the 2005–2014 unrest at Campi Flegrei caldera. Earth Planet Sci Lett 414:58–67

    Article  Google Scholar 

  • Chiodini G, Paonita A, Aiuppa A, Costa A, Caliro S, De Martino P, Acocella V, Vandemeulebrouck J (2016) Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat Commun 7:13712

    Article  Google Scholar 

  • Civetta L, Carluccio E, Innocenti F, Sbrana A, Taddeucci G (1991) Magma chamber evolution under the Phlegraean field during the last 10 ka: trace element and isotopic data. Eur J Mineral 3:415–428

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26

    Article  Google Scholar 

  • D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268

    Article  Google Scholar 

  • D’Auria L, Giudicepietro F, Aquino I, Borriello G, Del Gaudio C, Lo Bascio D, Martini M, Ricciardi GP, Ricciolino P, Ricco C (2011) Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J Geophys Res 116:B0431. https://doi.org/10.1029/2010JB007837

    Article  Google Scholar 

  • D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P, Tizzani P, Casu F, Lanari R, Manzo M, Martini M, Sansosti E, Zinno I (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci Rep 5:13100. https://doi.org/10.1038/srep13100

    Article  Google Scholar 

  • De Paolo D (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Deino AL, Orsi G, De Vita S, Piochi M (2004) The age of the Neapolitan yellow tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Del Gaudio C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195:48–56

    Article  Google Scholar 

  • De Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte spina eruption (4.1 ka) in the resurgent, nested Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301

    Article  Google Scholar 

  • De Natale G, Troise C, Mark D, Mormone A, Piochi M, Di Vito MA, Isaia R, Carlino S, Barra D, Somma R (2016) The Campi Flegrei deep drilling project (CFDDP): new insight on caldera structure, evolution and hazard implications for the Naples area (southern Italy). Geochem Geophys Geosyst 17(12):4836–4847. https://doi.org/10.1007/s00531-013-0979-0

    Article  Google Scholar 

  • Di Genova D, Sicola S, Romano C, Vona A, Fanara S, Spina S (2017) Effect of iron and nanolites on Raman spectra of volcanic glasses: a reassessment of existing strategies to estimate the water content. Chem Geol 475:76–86

    Article  Google Scholar 

  • Di Giuseppe MG, Troiano A, Carlino S (2017) Magnetotelluric imaging of the resurgent caldera on the island of ischia (southern Italy): inferences for its structure and activity. Bull Volcanol 79(85). https://doi.org/10.1007/s00445-017-1170-4

  • Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Briar G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei caldera (Italy). Bull Volcanol 73:295–320

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Esposti Ongaro T, Neri A, Menconi G, de'Michieli Vitturi M, Marianelli P, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178(3):378–396

    Article  Google Scholar 

  • Fedele L, Insinga DD, Calvert AT, Morra V, Perrotta A, Scarpati C (2011) 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): toward a new chronostratigraphic reconstruction of the Holocene volcanic activity. Bull Volcanol 73:1323–1336

    Article  Google Scholar 

  • Fedele L, Lustrino M, Melluso L, Morra V, Zanetti A, Vannucci R (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (southern Italy). Am Minerol 100:233–249

    Article  Google Scholar 

  • Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: insights into the Campanian ignimbrite magma chamber (Campi Flegrei, Italy). EPSL 449:251–279

    Article  Google Scholar 

  • Fourmentraux C, Métrich N, Bertagnini A, Rosi M (2012) Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean fields, Italy). Contrib Mineral Petrol 163:1121–1137

    Article  Google Scholar 

  • Giaccio B, Hajdas I, Isaia R, Deino A, Nomade S (2017) High precision 14C and 40Ar/39Ar dating of the Campanian ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci Rep 7:45940. https://doi.org/10.1038/srep45940

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2004) Structure and dynamics of the Laacher see magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. J Petrol 45:2197–2223

    Article  Google Scholar 

  • Gottsmann J, Martì J (2008) Caldera volcanism. Analysis, modelling and response. Elsevier Science ISBN: 9780080558974

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Article  Google Scholar 

  • Gurioli L, Pareschi MT, Zanella E, Lanza R, Deluca E, Bisson M (2005) Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology 33(6):441. https://doi.org/10.1130/G21294.1

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the BishopTuff. J Petrol 48:951–999. https://doi.org/10.1093/petrology/egm007

    Article  Google Scholar 

  • Houghton BF, Wilson C (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Isaia R, Marianelli P, Sbrana A (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36:L21303

    Article  Google Scholar 

  • Le Maitre RW (1989) In: Bateman P, Dudek A, Keller J, Lameyr J, Le Bas MJ, Sabine PJ, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (eds) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Trowbridge, pp 1–193

    Google Scholar 

  • Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian ignimbrite. Geology 34(11):937–940

    Article  Google Scholar 

  • Montanaro C, Scheu B, Mayer K, Orsi G, Moretti R, Isaia R, Dingwell DB (2016) Experimental investigations on the explosivity of steam-driven eruptions: a case study of Solfatara volcano (Campi Flegrei). J Geophys Res Solid Earth 121:7996–8014. https://doi.org/10.1002/2016JB013273

    Article  Google Scholar 

  • Moretti R, Troise C, Sarno F, De Natale G (2018) Caldera unrest driven by CO2-induced drying of the deep hydrothermal system. Sci Rep 8(8309). https://doi.org/10.1038/s41598-018-26610-2

  • Mormone A, Piochi M, Bellatreccia F, De Asti G, Moretti R, Della Venture G, Cavallo A, Mangiacapra A (2011) A CO2-rich magma source beneath the Phlegraean Volcanic District (southern Italy). Evidence from a melt inclusion study. Chem Geol 287:66–80

    Article  Google Scholar 

  • Neri A, Bevilacqua A, Esposti Ongaro T, Isaia R, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Iannuzzi E, Orsucci S, Pistolesi M, Rosi M, Vitale S (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J Geophys Res Solid Earth 120(4):2330–2349. https://doi.org/10.1002/2014JB011776

    Article  Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. US Geological Survey Bulletin. US Geological Survey, Reston 1108 pp

    Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layer magma chamber: the Neapolitan yellow tuff case history. J Volcanol Geotherm Res 67: 291–312

  • Orsi G, Civetta L, Del Gaudio C, De Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi GP, Ricco C (1999) Short–term ground deformation and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block–resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287(1–2):265–276. https://doi.org/10.1016/j.epsl.2009.08.013

    Article  Google Scholar 

  • Pabst S, Wörner G, Civetta L, Tesoro R (2007) Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70:961–976

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Pistolesi M, Isaia R, Marianelli P, Bertagnini A, Fourmentraux C, Albert PG, Tomlinson EL, Menzies MA, Rosi M, Sbrana A (2016) Simultaneous eruptions from multiple vents at Campi Flegrei (Italy) highlight new eruption processes at calderas. Geology 44(6):487–490. https://doi.org/10.1130/G37870.1

    Article  Google Scholar 

  • Pistolesi M, Bertagnini A, Di Roberto A, Isaia R, Vona A, Cioni R, Giordano G (2017) The Baia–Fondi di Baia eruption at Campi Flegrei (Italy): stratigraphy and dynamics of a multi-stage event marking the reactivation of the caldera. Bull Volcanol 79:67–79

    Article  Google Scholar 

  • Quick JE, Sinigoi S, Peressini G, Demarchi G, Wooden JL, Sbisà A (2009) Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km. Geology 37(7):603–606. https://doi.org/10.1130/G30003A.1

    Article  Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas. Geology 23:563–566. https://doi.org/10.1130/0091-7613

    Article  Google Scholar 

  • Roggensack K, Williams S, Schaefer S (1996) Volatiles from the 1994 eruptions for Rabaul: understanding large caldera systems. Science 273:490–493

    Article  Google Scholar 

  • Rosi M, Sbrana A (eds) (1987) The Phlegraean fields. Quad Ric Sci CNR Rome 114(10):175

  • Saccorotti G, Petrosino S, Bianco F, Castellano M, Galluzzo D, La Rocca M, Del Pezzo E, Zaccarelli L, Cusano P (2007) Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei caldera, Italy. Phys Earth Planet Inter 165(1):14–24. https://doi.org/10.1016/j.pepi.2007.07.006

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito MA, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera (Italy). Bull Volcanol 74:497–510

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian ignimbrite eruption, Phlegrean fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Signorelli S, Carroll MR (2000) Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim Cosmochim Acta 64(16):2851–2862

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Romano C, Caroll MR (2001) Volatile element zonation in Campanian ignimbrite magmas (Phlegrean fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contrib Mineral Petrol 140:543–553

    Article  Google Scholar 

  • Signorelli S, Carroll MR (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib Mineral Petrol 143:209–218

    Article  Google Scholar 

  • Slaby E, Götze J, Wörner G, Simon K, Wrzalik R, Smigielski M (2008) K-feldspar phenocrysts in microgranular magmatic enclaves: a cathodoluminescence and geochemical study of crystal growth as a marker of magma mingling dynamics. Lithos 105:85–97

    Article  Google Scholar 

  • Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15

    Article  Google Scholar 

  • Stock M, Humphreys MCS, Smith VC, Isaia R, Brooker RA, Pyle DM (2018) Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. J Pet. https://doi.org/10.1093/petrology/egy020/4955202

  • Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69:595–622

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronxo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–55

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system feeding the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (South Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro U, Boschi E (2007) Renewed ground uplift at Campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophys Res Lett 34:L03301. https://doi.org/10.1029/2006GL028545

    Article  Google Scholar 

  • Vidal MC et al (2016) The 1257 Samalas eruption (Lombok, Indonesia): the single greatest stratospheric gas release of the common era. Sci Rep 6:34868. https://doi.org/10.1038/srep348681

    Article  Google Scholar 

  • Walter TR, Shirzaei M, Manconi A, Solaro G, Pepe A, Manzo M, Sansosti E (2014) Possible coupling of Campi Flegrei and Vesuvius as revealed by InSAR time series, correlation analysis and time dependent modeling. J Volcanol Geotherm Res 280:104–110

    Article  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210:33–48

    Article  Google Scholar 

  • Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in S-O-H-C-Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Mineral Geochem 73:247–283

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. https://doi.org/10.1029/2008GL034242

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Campagnola for micro-Raman analyses and D. Mazzarella for having provided access to his private properties. We also thank J. Martì and an anonymous reviewer for their constructive comments and C. Bonadonna for editorial handling.

Funding

This study was funded by the “Project V1: Probabilistic Volcanic Hazard Analysis” in the framework of the agreement between Dipartimento di Protezione Civile and Istituto Nazionale di Geofisica e Vulcanologia (Research Unit UNIFI, responsible M. Pistolesi) and by the project "PRA 2018 (Progetti di Ricerca di Ateneo)" of University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pistolesi.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

ESM 1

(PDF 116 kb)

Figure S1

(a) K2O vs SiO2 and (b) CaO vs MgO plots showing comparison between SEM-EDS and EMPA data. (PNG 777 kb)

Figure S2

Diagram of Sr versus CaO with the variability fields for matrix glasses and bulk rocks of the Phlegrean Fields. Data from Georoc database have been plotted after review and improvement. Legend: Post-NYT, post-Neapolitan Yellow Tuff; NYT, Neapolitan Yellow Tuff; Post-CI and pre-NYT, volcanic activity between Neapolitan Yellow Tuff and Campanian Ignimbrite; CI, Campanian Ignimbrite; Pre-CI, pre-Campanian Ignimbrite activity. (PNG 146 kb)

High resolution image (TIF 11857 kb)

Figure S3

Diagram of 87Sr/86Sr versus CaO with the variability fields for matrix glasses and bulk rocks at Campi Flegrei. Data from Georoc database have been plotted after careful review. Legend: Post-NYT, post-Neapolitan Yellow Tuff; NYT, Neapolitan Yellow Tuff; Post-CI and pre-NYT, volcanic activity between Neapolitan Yellow Tuff and Campanian Ignimbrite; CI, Campanian Ignimbrite; Pre-CI, pre-Campanian Ignimbrite activity. Baia and Fondi di Baia data from this work are also reported for comparison. (PNG 140 kb)

High resolution image (TIF 10926 kb)

Table S1

Whole-rock data (major and trace elements) for both Baia and Fondi di Baia samples. (XLSX 12 kb)

Table S2

SEM-EDS matrix glass analyses for both Baia and Fondi di Baia samples on anhydrous base. Totals (not recalculated) are also shown. (XLSX 76 kb)

Table S3

Sr-isotope compositions and SEM-EDS major element analyses (wt.%) of Baia and Fondi di Baia matrix glasses. (XLSX 14 kb)

Table S4

EMPA major element compositions (wt.%) of tephra clasts from Baia and Fondi di Baia matrix glasses used for 87Sr/86Sr analyses. (XLSX 16 kb)

Table S5

Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch A. (TXT 62 kb)

Table S6

Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch B. (TXT 32 kb)

Table S7

Dataset produced with Rhyolite-MELTS simulation of crystal fractionation process of melt batch C. (TXT 37 kb)

Table S8

Dataset produced with Rhyolite-MELTS simulation of assimilation process of melt batches A and B. (TXT 303 kb)

Table S9

Calculations of limestone contamination of a melt batch A to match B and C compositions. (XLSX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloschina, M., Pistolesi, M., Bertagnini, A. et al. Magmatic reactivation of the Campi Flegrei volcanic system: insights from the Baia–Fondi di Baia eruption. Bull Volcanol 80, 75 (2018). https://doi.org/10.1007/s00445-018-1247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1247-8

Keywords

Navigation