Advertisement

Eruptive history of Incahuasi, Falso Azufre and El Cóndor Quaternary composite volcanoes, southern Central Andes

  • Pablo Grosse
  • Yuji Orihashi
  • Silvina R. Guzmán
  • Hirochika Sumino
  • Keisuke Nagao
Research Article

Abstract

Volcanoes can stay dormant for much longer than 10 ka and hence many Quaternary volcanoes lacking Holocene activity have the potential to become active. Reconstructing the eruptive histories of these volcanoes is an important first step towards evaluating their long-term eruptive probabilities. The southern Central Volcanic Zone (CVZ) of the Andes at ~ 27° S latitude has a notable concentration of Quaternary volcanoes, several considered potentially active, but most of which are poorly known. We reconstruct the eruptive histories of three of these volcanoes, Incahuasi, Falso Azufre and El Cóndor, on the basis of field and satellite image mapping and unspiked K-Ar geochronology, supported by petrography and whole-rock geochemistry. Incahuasi (volume of 62 ± 6 km3) comprises a main conical edifice, capped by a summit crater, that was constructed between ~ 1.6 and 0.7 Ma by mostly andesitic lavas at a growth rate of ~ 0.07 km3/ka. At 0.8–0.7 Ma, activity shifted to the eastern flank, with the emplacement of a trachydacitic lava dome and a trachyandesitic lava field. At 0.35 Ma, a mafic center consisting of overlapping scoria cones and basaltic andesite lava flows was emplaced on the NE flank. Falso Azufre (98 ± 12 km3) is an arcuate-shaped massif with several vents aligned NW-SE and ENE-WSW. It contains the remnant of a Pliocene andesitic edifice. The bulk of the massif was constructed between ~ 0.9 and 0.5 Ma by andesitic and trachyandesitic lava flows. More recent activity (< 0.4 Ma) consists of andesitic to dacitic flows, coulées and domes restricted to the summit regions and the eastern flank. The average Quaternary growth rate is ~ 0.1 km3/ka. El Cóndor (109 ± 8 km3) is a NW-SE elongated massif with two distinct stages of activity. The Pliocene stage consists of andesitic to dacitic rocks. Recent activity (< 0.15 Ma) is among the youngest recorded in the region and consists mainly of trachyandesitic to trachydacitic lava flows. The estimated eruption rate of ~ 0.4 km3/ka is one of the highest of the CVZ. Incahuasi has the lowest long-term eruptive potential of the three volcanoes. Falso Azufre has an intermediate long-term eruptive potential and a minor felsic phase may be ongoing. El Cóndor has the highest long-term eruptive potential and its main constructive phase may still be ongoing. Most CVZ volcanoes, including Incahuasi and Falso Azufre, have longer lifespans and lower average growth rates compared to volcanoes from other arcs, suggesting a significant difference between the CVZ and other arcs.

Keywords

Composite volcano Eruptive history Volcano growth rates Unspiked K-Ar geochronology Central Volcanic Zone of the Andes 

Notes

Acknowledgements

This work was funded by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) project PIP IU 286, Fundación Miguel Lillo (Argentina), through a scholarship awarded to PG by the CONICET–JSPS (Japan Society for the Promotion of Science) International Cooperation Program, and by the JSPS KAKENHI grant 15H02630 awarded to YO. SG thanks the project of CONICET (PUE IBIGEO). Mie Ichihara is thanked for her assistance and hospitality during PG’s stay in Japan. N. Hokanishi is thanked for her support during XRF analysis. PG is very grateful to Constantino Grosse for his invaluable assistance and companionship in the field. We thank Valerio Acocella and Shanaka de Silva for their thourough reviews of a previous version. Two anonymous reviewers and Associate Editor Valerio Acocella provided insightful comments that greatly improved the manuscript.

References

  1. Acocella V, Funiciello F (2010) Kinematic setting and structural control of arc volcanism. Earth Planet Sc Lett 289:43–53CrossRefGoogle Scholar
  2. Acocella V, Gioncada A, Omarini R, Riller U, Mazzuoli R, Vezzoli L (2011) Tectonomagmatic characteristics of the back-arc portion of the Calama–Olacapato–El Toro fault zone, Central Andes. Tectonics 30:TC3005CrossRefGoogle Scholar
  3. Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331–1359CrossRefGoogle Scholar
  4. Báez W, Arnosio M, Chiodi A, Ortiz-Yañes A, Viramonte JG, Bustos E, Giordano G, López JF (2015) Estratigrafía y evolución del Complejo Volcánico Cerro Blanco, Puna Austral, Argentina. Rev Mex Cienc Geol 31:29–49Google Scholar
  5. Baker PE, González-Ferrán O, Rex DC (1987) Geology and geochemistry of the Ojos del Salado volcanic region, Chile. J Geol Soc Lond 144:85–96CrossRefGoogle Scholar
  6. Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692CrossRefGoogle Scholar
  7. Beck SL, Zandt G, Myers SC, Wallace TC, Silver PG, Drake L (1996) Crustal-thickness variations in the Central Andes. Geology 24:407–410CrossRefGoogle Scholar
  8. Bianchi M, Heit B, Jakovlev A, Yuan X, Kay SM, Sandvol E, Alonso RN, Coira B, Brown L, Kind R, Comte D (2013) Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. Tectonophysics 586:65–83CrossRefGoogle Scholar
  9. Biggs J, Ebmeier SK, Aspinall WP, Lu Z, Pritchard ME, Sparks RSJ, Mather T (2014) Global link between deformation and volcanic eruption quantified by satellite imagery. Nat Commun 5:3471–3471CrossRefGoogle Scholar
  10. Brown SK, Loughlin SC, Sparks RSJ, Vye-Brown C, Barcalay J, Calder E, Cotrell E, Jolly G, Komorowski J-C, Mandeville C, Newhall C, Palma J, Potter S, Valentine G (2015) Global volcanic hazard and risk. In: Loughlin SC, Sparks RSJ, Brown SK, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 81–172CrossRefGoogle Scholar
  11. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res Solid Earth 97:17503–17529CrossRefGoogle Scholar
  12. Carniel R (2014) Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review. B Volcanol 76:848CrossRefGoogle Scholar
  13. Chaussard E, Amelung F (2014) Regional controls on magma ascent and storage in volcanic arcs. Geochem Geophys Geosyst 15:1407–1418CrossRefGoogle Scholar
  14. Chernicoff CJ, Richards JP, Zappettini EO (2002) Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical, and remote sensing evidence. Ore Geol Rev 21:127–155CrossRefGoogle Scholar
  15. Clavero J, Mpodozis C, Gardeweg M (1997) Mapa geológico del área del Salar de Wheelwright, Región de Atacama (Escala 1:100.000). Servicio Nacional de Geología y Minería de ChileGoogle Scholar
  16. Clavero J, Polanco E, Godoy E, Aguilar G, Sparks S, van Wyk de Vries B, Pérez de Arce C, Matthews S (2004a) Substrata influence in the transport and emplacement mechanism of the Ollagüe debris avalanche (northern Chile). Acta Vulcanol 16:59–76Google Scholar
  17. Clavero JE, Sparks RSJ, Pringle MS, Polanco E, Gardeweg MC (2004b) Evolution and volcanic hazards of Taapaca volcanic complex, Central Andes of northern Chile. J Geol Soc Lond 161:603–618CrossRefGoogle Scholar
  18. Clavero J, Mpodozis C, Gardeweg M, Valenzuela M (2012) Geología de las áreas Laguna Wheelwright y Paso San Francisco, Región de Atacama (Escala 1:100.000). Servicio Nacional de Geología y Minería de ChileGoogle Scholar
  19. Connor CB, McBirney AR, Furlan C (2006) What is the probability of explosive eruption at a long-dormant volcano? In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology, 1st edn. Spec Pub IAVCEI 1. Geol Soc London, pp 39–46Google Scholar
  20. Conway CE, Leonard GS, Townsend DB, Calvert AT, Wilson CJ, Gamble JA, Eaves SR (2016) A high-resolution 40Ar/39Ar lava chronology and edifice construction history for Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 327:152–179CrossRefGoogle Scholar
  21. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4CrossRefGoogle Scholar
  22. Davidson J, de Silva S (2000) Composite volcanoes. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, Cambridge, pp 663–681Google Scholar
  23. de Silva S, Francis P (1991) Volcanoes of the Central Andes. Springer-Verlag, BerlinGoogle Scholar
  24. Drew ST, Ducea MN, Schoenbohm LM (2009) Mafic volcanism on the Puna plateau, NW Argentina: implications for lithospheric composition and evolution with an emphasis on lithospheric foundering. Lithosphere 1:305–318CrossRefGoogle Scholar
  25. Escobar-Wolf RP, Diehl JF, Singer BS, Rose WI (2010) 40Ar/39Ar and paleomagnetic constraints on the evolution of Volcán de Santa María, Guatemala. Geol Soc Am Bull 122:757–771CrossRefGoogle Scholar
  26. Feeley TC, Davidson JP, Armendia A (1993) The volcanic and magmatic evolution of Volcán Ollagüe, a high-K, late Quaternary stratovolcano in the Andean Central Volcanic Zone. J Volcanol Geotherm Res 54:221–245CrossRefGoogle Scholar
  27. Fierstein J, Hildreth W, Calvert AT (2011) Eruptive history of South Sister, Oregon Cascades. J Volcanol Geotherm Res 207:145–179CrossRefGoogle Scholar
  28. Folkes CB, Wright HM, Cas RAF, de Silva SL, Lesti C, Viramonte JG (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. B Volcanol 73:1427–1454CrossRefGoogle Scholar
  29. Frey HM, Lange RA, Hall CM, Delgado-Granados H (2004) Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. Geol Soc Am Bull 116:259–276CrossRefGoogle Scholar
  30. Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120:271–287CrossRefGoogle Scholar
  31. Gardeweg M, Cornejo P, Davidson J (1984) Geologia del volcan Llullaillaco, Altiplano de Antofagasta, Chile (Andes Centrales). Rev Geol Chile 23:21–37Google Scholar
  32. Gardeweg M, Mpodozis C, Clavero J, Cuitiño L (1997), Mapa geológico de la Hoja Nevado Ojos del Salado, Región de Atacama (Escala 1:100.000). Servicio Nacional de Geología y Minería de ChileGoogle Scholar
  33. Gardeweg MC, Sparks RSJ, Matthews SJ (1998) Evolution of Lascar volcano, northern Chile. J Geol Soc Lond 155:89–104Google Scholar
  34. Gardeweg M, Clavero J, Mpodozis C, Pérez de Arce C, Villeneuve M (2000) El Macizo Tres Cruces: un complejo volcánico longevo y potencialmente activo en la Alta Cordillera de Copiapó, Chile. IX Congreso Geológico Chileno Actas 2:291–295Google Scholar
  35. Gillot PY, Chiesa S, Pasquare G, Vezzoli L (1982) < 33,000-yr K-Ar dating of the volcano-tectonic horst of the isle of Ischia, Gulf of Naples. Nature 299:242–244CrossRefGoogle Scholar
  36. González-Ferrán O (1995) Volcanes de Chile. Instituto Geográfico Militar, SantiagoGoogle Scholar
  37. González-Ferrán O, Baker PE, Rex DC (1985) Tectonic-volcanic discontinuity at latitude 27° south, Andean range, associated with Nazca plate subduction. Tectonophysics 112:423–441CrossRefGoogle Scholar
  38. Goss AR, Kay SM, Mpodozis C, Singer BS (2009) The Incapillo Caldera and Dome Complex (~28° S, Central Andes): a stranded magma chamber over a dying arc. J Volcanol Geotherm Res 184:389–404CrossRefGoogle Scholar
  39. Goss AR, Kay SM, Mpodozis C (2013) Andean adakite-like high-Mg andesites on the northern edge of the Chilean–Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J Petrol 54:2193–2234CrossRefGoogle Scholar
  40. Grosse P, van Wyk de Vries B, Petrinovic IA, Euillades PA, Alvarado G (2009) Morphometry and evolution of arc volcanoes. Geology 37:651–654CrossRefGoogle Scholar
  41. Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136:114–131CrossRefGoogle Scholar
  42. Grosse P, Euillades P, Euillades LD, vanWyk de Vries B (2014a) A global database of composite volcano morphometry. Bull Volcanol 76:784CrossRefGoogle Scholar
  43. Grosse P, Orihashi Y, Guzmán SR, Petrinovic IA (2014b) Volcanismo Cuaternario en la zona del Paso San Francisco, Catamarca. XIX Cong Geol Argentino, Abstract S24–2-6Google Scholar
  44. Grosse P, Guzmán S, Petrinovic IA (2017) Volcanes compuestos cenozoicos del noroeste argentino. In: Muruaga CM, Grosse P (eds) Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Cong Geol Argentino, Tucumán, pp 484–517Google Scholar
  45. Guillou H, Van Vliet-Lanoë B, Guðmundsson A, Nomade S (2010) New unspiked K–Ar ages of Quaternary sub-glacial and sub-aerial volcanic activity in Iceland. Quat Geochronol 5:10–19CrossRefGoogle Scholar
  46. Guzmán S, Grosse P, Montero-López C, Hongn F, Pilger R, Petrinovic I, Seggiaro R, Aramayo A (2014) Spatial-temporal distribution of explosive volcanism in the 25-28°S segment of the Andean Central Volcanic Zone. Tectonophysics 636:170–189CrossRefGoogle Scholar
  47. Hildreth W, Lanphere MA (1994) Potassium-argon geochronology of a basalt-andesite-dacite arc system: the Mount Adams volcanic field, Cascade range of southern Washington. Geol Soc Am Bull 106:1413–1429CrossRefGoogle Scholar
  48. Hildreth W, Fierstein J, Lanphere MA (2003a) Eruptive history and geochronology of the Mount Baker volcanic field, Washington. Geol Soc Am Bull 115:729–764CrossRefGoogle Scholar
  49. Hildreth W, Lanphere MA, Fierstein J (2003b) Geochronology and eruptive history of the Katmai volcanic cluster, Alaska peninsula. Earth Planet Sc Lett 214:93–114CrossRefGoogle Scholar
  50. Hobden BJ, Houghton BF, Davidson JP, Weaver SD (1999) Small and short-lived magma batches at composite volcanoes: time windows at Tongariro volcano, New Zealand. J Geol Soc Lond 156:865–868CrossRefGoogle Scholar
  51. Hora JM, Singer BS, Wörner G (2007) Volcano evolution and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcán Parinacota, Chile. Geol Soc Am Bull 119:343–362CrossRefGoogle Scholar
  52. Hoshizumi H, Uto K, Watanabe K (1999) Geology and eruptive history of Unzen volcano, Shimabara peninsula, Kyushu, SW Japan. J Volcanol Geotherm Res 89:81–94CrossRefGoogle Scholar
  53. Jicha BR, Singer BS (2006) Volcanic history and magmatic evolution of Seguam Island, Aleutian Island arc, Alaska. Geol Soc Am Bull 118:805–822CrossRefGoogle Scholar
  54. Jicha BR, Coombs ML, Calvert AT, Singer BS (2012) Geology and 40Ar/39Ar geochronology of the medium- to high-K Tanaga volcanic cluster, western Aleutians. Geol Soc Am Bull 124:842–856CrossRefGoogle Scholar
  55. Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139–140:122–135Google Scholar
  56. Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano–Puna plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: plateau uplift, shallow subduction, and ridge collision. Geol Soc Am Mem 204:229–259.  https://doi.org/10.1130/2009.1204(11)
  57. Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flatslab. J S Am Earth Sci 15:39–59CrossRefGoogle Scholar
  58. Kay SM, Coira B, Mpodozis C (2006) Late Neogene volcanism in the Cerro Blanco region of the Puna Austral, Argentina (~26.5°S, ~67.5°W). XI Cong Geol Chileno Actas 2:499–502Google Scholar
  59. Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2011) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. B Volcanol 73:1487–1511CrossRefGoogle Scholar
  60. Kay SM, Mpodozis C, Gardeweg M (2014) Magma sources and tectonic setting of central Andean andesites (25.5–28°S) related to crustal thickening, forearc subduction erosion and delamination. In: Gómez-Tuena A, Straub SM, Zellmer GF (eds) Orogenic andesites and crustal growth, vol 385. Geol Soc London Spec Publ, pp 303–334Google Scholar
  61. Klemetti EW, Grunder AL (2008) Volcanic evolution of Volcán Aucanquilcha: a long-lived dacite volcano in the Central Andes of northern Chile. B Volcanol 70:633–650Google Scholar
  62. Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogaard P, Görler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J S Am Earth Sci 12:157–182Google Scholar
  63. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  64. Lewis-Kenedi CB, Lange RA, Hall CM, Delgado-Granados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. B Volcanol 67:391–414Google Scholar
  65. Loughlin SC, Vye-Brown C, Sparks RSJ, Brown SK, Barclay J, Calder E, Cottrell E, Jolly G, Komorowski J-C, Mandeville C, Newhall C, Palma J, Potter S, Valentine G (2015) An introduction to global volcanic hazard and risk. In: Loughlin SC, Sparks RSJ, Brown SK, Jenkins SF, Vye-Brown C (eds) Global volcanic hazards and risk. Cambridge University Press, Cambridge, pp 1–79CrossRefGoogle Scholar
  66. Matsumoto A, Kobayashi T (1995) K–Ar age determination of late Quaternary volcanic rocks using the “mass fractionation correction procedure”: application to the Younger Ontake volcano, central Japan. Chem Geol 125:123–135Google Scholar
  67. Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002) Geodynamical evolution of Central Andes at 24 S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt. J Volcanol Geotherm Res 118:205–228CrossRefGoogle Scholar
  68. McNutt SR (1996) Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer-Verlag, Berlin, pp 99–146CrossRefGoogle Scholar
  69. Montero López MC, Hongn F, Brod A, Seggiaro R, Marrett R, Sudo M (2010) Magmatismo ácido del Mioceno Superior-Cuaternario en el área de Cerro Blanco-La Hoyada, Puna Austral. Rev Asoc Geol Argent 67:329–348Google Scholar
  70. Mpodozis C, Cornejo P, Kay SM, Tittler A (1995) La Franja de Maricunga: síntesis de la evolución del frente volcánico oligoceno-mioceno de la zona sur de los Andes Centrales. Rev Geol Chile 22:273–314Google Scholar
  71. Mpodozis C, Kay SM, Gardeweg M, Coira B (1996) Geología de la región de Ojos del Salado (Andes Centrales, 27° S): implicancias de la migración hacia el este del frente volcánico Cenozoico Superior. XIII Cong Geol Arg Actas 3:539–548Google Scholar
  72. Muir DD, Barfod DN, Blundy JD, Rust AC, Sparks RSJ, Clarke KM (2015) The temporal record of magmatism at Cerro Uturuncu, Bolivian Altiplano. In: Caricchi L, Blundy JD (eds) Chemical, physical and temporal evolution of magmatic systems. Geol Soc London Spec Pub 422:57–84Google Scholar
  73. Nagao K, Ogata A, Miura Y, Matsuda J, Akimoto S (1991) Highly reproducible 13 and 17 ka K–Ar ages of two volcanic rocks. Geochem J 25:447–451CrossRefGoogle Scholar
  74. Nagao K, Ogata A, Miura YN, Yamaguchi K (1996) Ar isotope analysis for K-Ar dating using two modified-VG5400 mass spectrometers–I: isotope dilution method. J Mass Spectrom Soc Jpn 44:36–61CrossRefGoogle Scholar
  75. Naranjo J, Cornejo P (1992) Hoja Salar de la Isla (Escala 1:250.000). Servicio Nacional de Geologia y Mineria de ChileGoogle Scholar
  76. Norini G, Báez W, Becchio R, Viramonte J, Giordano G, Arnosio M, Pinton A, Groppelli G (2013) The Calama–Olacapato–El Toro fault system in the Puna plateau, Central Andes: geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280–1297CrossRefGoogle Scholar
  77. Ochi Ramacciotti ML, Escalante Fochi F, Grosse P (2017) Volcanismo monogenético máfico cuaternario sobre el lineamiento Peinado, Puna Sur. XX Cong Geol Argentino, Abstract ST8:144–149Google Scholar
  78. Orihashi Y, Naranjo JA, Motoki A, Sumino H, Hirata D, Anma R, Nagao K (2004) The Quaternary volcanic activities of Hudson and Lautaro volcanoes, Chilean Patagonia: new constraints from K–Ar ages. Rev Geol Chile 37:204–224Google Scholar
  79. Ownby S, Delgado Granados H, Lange RA, Hall CM (2007) Volcán Tancítaro, Michoacán, Mexico, 40Ar/39Ar constraints on its history of sector collapse. J Volcanol Geotherm Res 161:1–14CrossRefGoogle Scholar
  80. Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  81. Petrinovic IA, Riller U, Brod JA, Alvarado G, Arnosio M (2006) Bimodal volcanism in a tectonic transfer zone: evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina. J Volcanol Geotherm Res 152:240–252CrossRefGoogle Scholar
  82. Polanco E, Clavero J, Arcos R (2014) Cadena Volcánica Los Cuyanos-Sierra Nevada: geoquímica y edades Ar/Ar, Zona Volcánica Central, Región de Atacama, Chile (26°26’S). XIX Cong Geol Arg Actas S24–3-16Google Scholar
  83. Prambada O, Arakawa Y, Ikehata K, Furukawa R, Takada A, Wibowo HE, Nakagawa M, Kartadinata MN (2016) Eruptive history of Sundoro volcano, Central Java, Indonesia since 34 ka. B Volcanol 78:81Google Scholar
  84. Richards JP, Villeneuve M (2001) The Llullaillaco volcano, Northwest Argentina: construction by Pleistocene volcanism and destruction by sector collapse. J Volcanol Geotherm Res 105:77–105CrossRefGoogle Scholar
  85. Richards JP, Villeneuve M (2002) Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, Northwest Argentina. J Volcanol Geotherm Res 116:161–200CrossRefGoogle Scholar
  86. Richards JP, Ullrich T, Kerrich R (2006) The late Miocene–Quaternary Antofalla volcanic complex, southern Puna, NW Argentina: protracted history, diverse petrology, and economic potential. J Volcanol Geotherm Res 152:197–239CrossRefGoogle Scholar
  87. Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the Central Andes. Earth Planet Sc Lett 188:299–311CrossRefGoogle Scholar
  88. Risse A, Trumbull RB, Coira B, Kay SM, van den Bogaard P (2008) 40Ar/39Ar geochronology of mafic volcanism in the back-arc region of the southern Puna plateau, Argentina. J S Am Earth Sci 26:1–15CrossRefGoogle Scholar
  89. Robin C, Samaniego P, Le Pennec JL, Fornari M, Mothes P, van der Plicht J (2010) New radiometric and petrological constraints on the evolution of the Pichincha volcanic complex (Ecuador). Bull Volcanol 72:1109–1129CrossRefGoogle Scholar
  90. Rodríguez I, Roche O, Moune S, Aguilera F, Campos E, Pizarro M (2015) Evolution of Irruputuncu volcano, Central Andes, northern Chile. J S Am Earth Sci 63:385–399CrossRefGoogle Scholar
  91. Salfity JA (1985) Lineamientos transversales al rumbo Andino en el noroeste Argentino. IV Cong Geol Chileno Actas 2:119–137Google Scholar
  92. Samaniego P, Barba D, Robin C, Fornari M, Bernard B (2012) Eruptive history of Chimborazo volcano (Ecuador): a large, ice-capped and hazardous compound volcano in the northern Andes. J Volcanol Geotherm Res 221:33–51CrossRefGoogle Scholar
  93. Samaniego P, Valderrama P, Mariño J, van Wyk de Vries B, Roche O, Manrique N, Chédeville C, Liorzou C, Fidel L, Malnati J (2015) The historical (218±14 aBP) explosive eruption of Tutupaca volcano (southern Peru). Bull Volcanol 77:51CrossRefGoogle Scholar
  94. Samaniego P, Rivera M, Mariño J, Guillou H, Liorzoud C, Zerathe S, Delgado R, Valderrama P, Scao V (2016) The eruptive chronology of the Ampato–Sabancaya volcanic complex (southern Peru). J Volcanol Geotherm Res 323:110–128CrossRefGoogle Scholar
  95. Scaillet S, Guillou H (2004) A critical evaluation of young (near-zero) K–Ar ages. Earth Planet Sci Lett 220:265–275CrossRefGoogle Scholar
  96. Scandone R, Bartolini S, Martí J (2016) A scale for ranking volcanoes by risk. Bull Volcanol 78:2CrossRefGoogle Scholar
  97. Schmidt ME, Grunder AL (2009) The evolution of North Sister: a volcano shaped by extension and ice in the central Oregon Cascade Arc. Geol Soc Am Bull 121:643–662Google Scholar
  98. Schnurr WBW, Trumbull RB, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67° to 72 °W. J Volcanol Geotherm Res 266:27–46Google Scholar
  99. Seggiaro R, Hongn F, Folguera A, Clavero J (2006) Hoja Geológica 2769-II Paso de San Francisco (Escala 1:250.000). Servicio Geológico Minero de ArgentinaGoogle Scholar
  100. Siebel W, Schnurr WBW, Hahne K, Kraemer B, Trumbull RB, van den Bogaard P, Emmermann R (2001) Geochemistry and isotope systematic of small- to medium-volume Neogene–Quaternary ignimbrites in the southern Central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–217CrossRefGoogle Scholar
  101. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, BerkeleyGoogle Scholar
  102. Singer BS, Thompson RA, Dungan MA, Feeley TC, Nelson ST, Pickens JC, Brown LL, Wulff AW, Davidson JP, Metzger J (1997) Volcanism and erosion during the past 930 k.y. at the Tatara–San Pedro complex, Chilean Andes. Geol Soc Am Bull 109:127–142CrossRefGoogle Scholar
  103. Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618CrossRefGoogle Scholar
  104. Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sc Lett 331–332:152–163CrossRefGoogle Scholar
  105. Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O'Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galán caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248CrossRefGoogle Scholar
  106. Szakács A (1994) Redefining active volcanoes: a discussion. B Volcanol 56:321–325CrossRefGoogle Scholar
  107. Thouret J-C, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001) Geology of El Misti volcano near the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610CrossRefGoogle Scholar
  108. Thouret J-C, Rivera M, Wörner G, Gerbe M-C, Finizola A, Fornari M, Gonzales K (2005) Ubinas: the evolution of the historically most active volcano in southern Peru. B Volcanol 67:557–589CrossRefGoogle Scholar
  109. Trumbull R, Riller U, Oncken O, Scheuber E, Munier K, Hongn F (2006) The time-space distribution of Cenozoic arc volcanism in the Central Andes: a new data compilation and some tectonic considerations. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny. Front Earth Sci 1:29–43.  https://doi.org/10.1007/978-3-540-48684-8
  110. Vezzoli L, Tibaldi A, Renzulli A, Menna M, Flude S (2008) Faulting-assisted lateral collapses and influence onshallow magma feeding system at Ollagüe volcano (Central Volcanic Zone, Chile-Bolivia Andes). J VolcanolGeotherm Res 171:137–159Google Scholar
  111. Ward KM, Delph JR, Zandt G, Beck SL, Ducea MN (2017) Magmatic evolution of a cordilleran flare-up and its role in the creation of silicic crust. Nature Sci Rep 7:9047Google Scholar
  112. Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from northern Chile (18-22°S): implications for magmatism and tectonic evolution of the Central Andes. Rev Geol Chile 27:205–240Google Scholar
  113. Zentilli M (1974) Geological evolution and metallogenetic relationships in the Andes of northern Chile between 26° and 29° south. PhD thesis, Queen’s University, Kingston, CanadaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONICET and Fundación Miguel LilloSan Miguel de TucumánArgentina
  2. 2.Earthquake Research InstituteThe University of TokyoTokyoJapan
  3. 3.Global Environment and Disaster Prevention Sciences, Graduate School of Science and TechnologyHirosaki UniversityAomoriJapan
  4. 4.Instituto de Bio y Geociencias del NOA (IBIGEO), UNSa-CONICETRosario de LermaArgentina
  5. 5.Institute of Earth Sciences Jaume AlmeraICTJA-CSICBarcelonaSpain
  6. 6.Geochemical Research Center, Graduate School of ScienceThe University of TokyoTokyoJapan
  7. 7.Department of Basic Science, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  8. 8.Division of Polar Earth–System SciencesKOPRI (Korea Polar Research Institute)IncheonSouth Korea

Personalised recommendations