Skip to main content
Log in

Geochemical and textural constraints on degassing processes in sub-Plinian eruptions: case-study of the Greenish Pumice eruption of Mount Somma-Vesuvius

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Plinian eruptions are characterized by high intensity and an overall steady character, and result in a stable convective column. The main processes controlling the dynamics of such steady and stable plume systems have been extensively investigated. Conversely, sub-Plinian eruptions are unsteady, as recorded by the large variability of the products and deposits. Our knowledge of the processes creating this unsteadiness on various timescales remains limited, and still requires more observations as well as theoretical and experimental investigation. Here, we focus on the sub-Plinian eruption of the Greenish Pumice (GP, 19,265 ± 105 BP), Mt. Somma-Vesuvius (Italy). On the basis of coupled geochemical and textural analyses of samples from the well-established stratigraphy of the GP deposits, we investigate volatiles (H2O, CO2, F, Cl) to better constrain the unsteady sub-Plinian eruptive style. This allows us to carry out a detailed study of the degassing processes in relation to the eruption dynamics. We find that degassing by open-system processes generally dominates throughout the entire eruption, but alternates with episodes of closed-system degassing. The fluctuating degassing regimes, responsible for the variable magma ascent rate within the conduit, are also responsible for the eruptive column instability. Volatile behavior is well correlated with textural heterogeneities of the eruptive products. Both reflect higher conduit heterogeneity than for Plinian eruptions, where we find a higher horizontal gradient in magma ascent velocity due to a smaller conduit diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108. https://doi.org/10.1007/s00445-012-0648-3

    Article  Google Scholar 

  • Anderko A, Pitzer KS (1993a) Equation of state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim Cosmochim Acta 57:1657–1680

    Article  Google Scholar 

  • Anderko A, Pitzer KS (1993b) Phase equilibria and volumetric properties of the systems KCl–H2O and NaCl–KCl–H2O above 573 K: equation of state representation. Geochim Cosmochim Acta 57:4885–4897

    Article  Google Scholar 

  • Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64:372–391. https://doi.org/10.1007/s00445-002-0215-4

    Article  Google Scholar 

  • Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma-Vesuvius volcano. Period Miner 64:77–78

    Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and sub-Plinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150. https://doi.org/10.1007/s004450100130

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G, Michel A (2008) Non-volatile vs volatile behaviors of halogens during the AD 79 Plinian eruption of Mt. Vesuvius. Earth Planet Sci Lett 269:66–79

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosys. https://doi.org/10.1029/2010GC003028

  • Balcone-Boissard H, Boudon G, Villemant B (2011) Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius. Bull Volcanol 73(3):279–294. https://doi.org/10.1007/s00445-010-0409-0

    Article  Google Scholar 

  • Balcone-Boissard H, Boudon G, Ucciani G, Villemant B, Cioni R, Civetta L, Orsi G (2012) Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma–Vesuvius (Italy). Comparison with the Pompeii eruption. Earth Planet Sci Lett 331–332:257–268. https://doi.org/10.1016/j.epsl.2012.03.011

    Article  Google Scholar 

  • Balcone-Boissard H, Boudon G, Cioni R, Webster J, Zdanowicz G, Orsi G, Civetta L (2016) Chlorine as a geobarometer tool for alkaline magmas: evidences from a systematic study of the explosive eruptions of Vesuvius. Sci Rep 6:21726. https://doi.org/10.1038/srep21726

    Article  Google Scholar 

  • Barnes JD, Prather TJ, Cisneros M, Befus K, Gardner JE, Larson TE (2014) Stable chlorine isotope behavior during volcanic degassing of H2O and CO2 at Mono Craters, CA. Bull Volcanol 76:805. https://doi.org/10.1007/s00445-014-0805-y

    Article  Google Scholar 

  • Beerman O, Botcharnikov RE, Nowak M (2015) Partitioning of sulfur and chlorine between aqueous fluid and basaltic melt at 1050°C, 100 and 200 MPa. Chem Geol 418:132–157

    Article  Google Scholar 

  • Beermann O (2010) The solubility of sulfur and chlorine in H2O-bearing dacites of Krakatau and basalts of Mt. Etna. Unpub. Ph.D. thesis, Hannover, 109 pp

  • Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28:347–350

    Article  Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacite melt at 850 °C and 200 MPa. Chem Geol 213:207–225

    Article  Google Scholar 

  • Burgisser A, Degruyter W (2015) Magma ascent and degassing at shallow levels. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn, Chapter 11. Academic Press, pp 225–236. https://doi.org/10.1016/B978-0-12-385938-9.00011-0

  • Bursik M (1993) Sub-Plinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:47–60

    Article  Google Scholar 

  • Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055

    Article  Google Scholar 

  • Campagnola S, Romano C, Mastin LG, Vona A (2016) Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contrib Mineral Petrol 171:1–25. https://doi.org/10.1007/s00410-016-1265-5

    Article  Google Scholar 

  • Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. Rev Mineral Geochem 30:447–478

    Google Scholar 

  • Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 plinian eruption of Vesuvius. J Petrol 36(3):739–776

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18.277–18.294

    Article  Google Scholar 

  • Cioni R, Santacroce R, Sbrana A (1999a) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera. Bull Volcanol 60:207–222

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1999b) Temperature of Vesuvius magmas. Geology 27:443–446

    Article  Google Scholar 

  • Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a sub-Plinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178(3):331–346

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73:789–810

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Rosi M (2015) Plinian and Subplinian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, 2nd edn, Chapter 29. Academic Press, pp 519–535. https://doi.org/10.1016/B978-0-12-385938-9.00029-8

  • Colombier M, Wadsworth FB, Gurioli L, Scheu B, Kueppers U, Di Muro A, Dingwell DB (2017) The evolution of pore connectivity in volcanic rocks. Earth Planet Sci Lett 462:99–109

    Article  Google Scholar 

  • Dalou C, Le Loscq C, Mysen B (2015) In situ study of the fractionation of hydrogen isotopes between aluminosilicate melts and coexisting aqueous fluids at high pressure and high temperature—implications for the δD in magmatic processes. Earth Planet Sci Lett 426:158–166

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Fanara S, Botcharnikov RE, Palladino DM, Adams F, Buddensieck J, Mulch A, Behrens H (2015) Volatiles in magmas related to the Campanian Ignimbrite eruption: experiments vs. natural findings. Am Mineral 100:2284–2297

    Article  Google Scholar 

  • Gaonac’h H, Lovejoy S, Schertzer D (2004) Scaling vesicle distributions and volcanic eruptions. Bull Volcanol 67:350–357

    Article  Google Scholar 

  • Gaonac'h H, Lovejoy S, Stix J, Scherzter D (1996) A scaling growth model for bubbles in basaltic lava flows. Earth Planet Sci Lett 139:395–409

    Article  Google Scholar 

  • Gardner JE, Thomas RME, Jaupart J, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58:144–162

    Article  Google Scholar 

  • Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218

    Article  Google Scholar 

  • Giachetti T, Gonnermann HM (2013) Water in volcanic pyroclast: rehydration or incomplete degassing? Earth Planet Sci Lett 369–370:317–332

    Article  Google Scholar 

  • Giachetti T, Gonnermann HM, Gardner JE, Shea T, Gouldstone A (2015) Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochim Cosmochim Acta 148:457–476

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics of volcanic eruptions. Ann Rev Fluid Mech 39:321–356

    Article  Google Scholar 

  • Gurioli L, Houghton BF, Cashman K, Cioni R (2005) Complex changes in eruption dynamics during the 79AD eruption of Vesuvius. Bull Volcanol 67:144–159

    Article  Google Scholar 

  • Gurioli L, Sulpizio R, Cioni R, Sbrana A, Luperini W, Santacroce R, Andronico D (2010) Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull Volcanol 72:1021–1038. https://doi.org/10.1007/s00445-010-0379-2

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Iacono Marziano G, Schmidt B, Dolfi D (2007) Equilibrium and disequilibrium degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. J Volcanol Geotherm Res 161:151–164

    Article  Google Scholar 

  • Jaupart C (1996) Physical models of volcanic eruptions. Chem Geol 128:217–227

    Article  Google Scholar 

  • Jaupart C, Allègre C (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3–4):413–429

    Article  Google Scholar 

  • LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Pet 27:745–750

    Article  Google Scholar 

  • Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. https://doi.org/10.1029/2004JB003155

    Article  Google Scholar 

  • Mastin LG, Ghiorso MS (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits: report. Vancouver, Wash, USGS/CascadesVolcano Observatory. http://vulcan.wr.usgs.gov/Projects/Mastin/Publications/OFR00209/framework.html

  • Métrich N, Deloule E (2014) Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): insights from olivine-hosted melt inclusions. Lithos 206-207:400–408

    Article  Google Scholar 

  • Mundula F (2002) Le eruzioni sub-Pliniane del Somma-Vesuvio: il ruolo della composizione e della dinamica eruttiva nella definizione dei caratteri tessiturali dei prodotti. PhD, Univ. Cagliari

  • Mundula F, Cioni R (2006) Bubble growth during subplinian events: the greenish pumice eruption of Somma-Vesuvius (Italy). EGU fall meeting. Geophys Res Abstr 8:05317

    Google Scholar 

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178(3):397–415

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (2015) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, 2nd edn, Chapter 13. Academic Press, pp 257–264. https://doi.org/10.1016/B978-0-12-385938-9.00013-4

  • Rolandi G, Barrella AM, Borrelli A (1993) The 1631 eruption of Vesuvius. J Volcanol Geotherm Res 58:183–201

    Article  Google Scholar 

  • Rolandi G, Petrosino P, McGeehin JP (1998) The interplinian activity at Somma-Vesuvius in the last 3500 years. J Volcanol Geotherm Res 82(1–4):19–52

    Article  Google Scholar 

  • Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129:291–319. https://doi.org/10.1016/S0377-0273(03)00279-8

    Article  Google Scholar 

  • Rosi M, Santacroce R (1983) The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geotherm Res 17:249–271

    Article  Google Scholar 

  • Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:183–201

    Article  Google Scholar 

  • Rust AC, Cahsman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008494

  • Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass composition of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010a) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3-4):271–289

    Article  Google Scholar 

  • Shea T, Gurioli L, Larsen JF, Houghton BF, Hammer JE, Cashman KV (2010b) Linking experimental and natural vesicle textures in Vesuvius 79AD white pumice. J Volcanol Geotherm Res 192:69–84

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39:695–698

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74:2363–2381. https://doi.org/10.1007/s00445-012-0668-z

    Article  Google Scholar 

  • Shea T, Hellebrand E, Gurioli L, Tuffen H (2014) Conduit- to localized-scale degassing during Plinian eruptions: insights from major element and volatile (Cl and H2O) analyses within Vesuvius AD 79 pumice. J Petrol 55:315–344. https://doi.org/10.1093/petrology/egt1069

    Article  Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203. https://doi.org/10.1029/2005JB003934

    Article  Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767

    Article  Google Scholar 

  • Taylor BE (1991) Degassing of obsidian dome rhyolite, Inyo volcanic chain, California. In: Taylor HP, O’Neil JR, Kaplan IR (eds) The Geochemical Society, Spec. Publ. 3. Elsevier, Amsterdam, pp 339–353

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316

    Article  Google Scholar 

  • Villemant B, Boudon G (1998) Transition between dome-forming and Plinian eruptive style: H2O and Cl degassing behavior. Nature 392:65–69

    Article  Google Scholar 

  • Villemant B, Boudon G (1999) H2O and halogen (F, Cl, Br) behavior during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions: a new classification scheme. Geol Rundsch 62:431–446

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240

    Article  Google Scholar 

  • Webster JD, DeVivo B (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am Mineral 87:1046–1061

    Article  Google Scholar 

  • Webster JD, Sintoni MF, De Vivo B (2009) The partitioning behavior of Cl and S in aqueous fluid- and saline-liquid saturated phonolitic and trachytic melts at 200 MPa. Chem Geol 263:19–36

    Article  Google Scholar 

  • Webster JD, Goldoff BA, Sintoni MF, Shimizu N, Vivo D (2014) B C-O-H-S-Cl-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J Petrol 55:2217–2248

    Article  Google Scholar 

  • Webster JD, Vetere F, Botcharnikov RE, Goldoff B, McBirney A, Doherty AL (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: applications to magmas of Augustine Volcano, Alaska. Am Mineral 100:522–535

    Article  Google Scholar 

  • Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. J Chem Geol 174:209–223

    Article  Google Scholar 

  • Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Michel for analytical support for water measurements. M. Fialin, F. Couffignal, and N. Rividi are also thanked for help support at the electronic microprobe (Camparis, Paris, France) and O. Boudouma for textural analyses by SEM (Paris, France). A. Carandente and P. Belviso helped in sampling fallout deposits. The INSU-CNRS SIMS national facility is acknowledged for isotopic analyses on MI. The manuscript benefits from the constructive review of L. Gurioli and T. Giachetti and English corrections from the associated editor Steve Self and Fran van Wyk de Vries. We also thank the executive editor, Andrew Harris, for his comments. IPGP contribution number: xxx.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Boudon or H. Balcone-Boissard.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

ESM 1

(XLSX 66 kb)

ESM 2

(XLSX 17 kb)

ESM 3

(DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdanowicz, G., Boudon, G., Balcone-Boissard, H. et al. Geochemical and textural constraints on degassing processes in sub-Plinian eruptions: case-study of the Greenish Pumice eruption of Mount Somma-Vesuvius. Bull Volcanol 80, 38 (2018). https://doi.org/10.1007/s00445-018-1213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1213-5

Keywords

Navigation