Advertisement

Bulletin of Volcanology

, 80:20 | Cite as

Tephra and cryptotephra in a ~ 60,000-year-old lacustrine sequence from the Fucino Basin: new insights into the major explosive events in Italy

  • Alessio Di Roberto
  • Alessandra Smedile
  • Paola Del Carlo
  • Paolo Marco De Martini
  • Marina Iorio
  • Maurizio Petrelli
  • Daniela Pantosti
  • Stefania Pinzi
  • Alessandro Todrani
Research Article

Abstract

Two cores were sampled in the Fucino Basin (central Apennines, Italy), which represents an extensional intramountain basin filled by Pliocene to Quaternary continental alluvial and lacustrine deposits. The cores were investigated for tephra content and five visible tephras with thickness ranging from 1 to 8 cm were identified. Six additional cryptotephra were identified during the inspection of significant peaks of the magnetic susceptibility curve. Texture and mineralogy of five tephra and six cryptotephra layers were analyzed by means of scanning electron microscope coupled with energy-dispersive X-ray spectrometry system (SEM-EDS) and geochemical measurements were performed by an electron microprobe (EPMA) equipped with five wavelength-dispersive spectrometers (WDS) and using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) system on single glass shards. The results allowed us to assign tephra and cryptotephra to ten known volcanic eruptions that occurred over the last ca. 60 ka in the Campanian Province (Phlegrean Fields and Ischia Island), the Alban Hills volcanic complex, and Lipari island. In particular, we recognized the deposits of the Monte Epomeo Green Tuff and the Piroclastiti di Catavola eruptions of Ischia, the pre-Campanian Ignimbrite Tlc, the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions of the Phlegrean Fields, the Gabellotto-Fiume Bianco eruption of Lipari, and all the four explosive events belonging to the last cycle of volcanic activity of Albano maar (Albano 4–7). Deposits from five of these identified events (i.e., Piroclastiti di Catavola, Gabellotto-Fiume Bianco, Albano 5 and 6 eruptions, and Campanian Ignimbrite) were previously un-reported in the Fucino basin. These findings add new tephra layers to the list of possible tephrochronologic markers in the region and highlight that a comprehensive tephra record may be constructed when the study of cryptotephra layers is included. Moreover, results provide insights into the most recent volcanic activity of Albano maar, allowing us to date the onset of activity at the maar system at ca. 40 ka and to estimate the ages of all four eruptions that made up this eruptive sequence at ca. 37.5 ka (Albano 5), ca. 36.5 ka (Albano 6) and ca. 36 ka (Albano 7), respectively. Our work extends the known dispersal of several major explosive events, suggesting the intensity and magnitude appraisals, and attended risk scenario’s need to be revised using improved records of distal fall out.

Keywords

Tephra Tephrochronology Fucino Basin Campanian Ignimbrite Monte Epomeo Green Tuff Neapolitan Yellow Tuff Gabellotto-Fiume Bianco 

Notes

Acknowledgements

We thank S. Amoroso, C.A. Brunori, S. R. Civico, Orefice, S. Pucci, and V. Sapia for their support in the field, and M. Nazzari for the assistance in EMPA analyses. B. Giaccio, the Associate Editor L. Capra, and three anonymous reviewers are greatly acknowledged for their contribution in revision of the manuscript and in discussion of the data.

Funding information

This work was funded by the FIRB-Abruzzo project, “High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake” (http://progettoabruzzo.rm.ingv.it/en; funding codes: RBAP10ZC8K_005).

Supplementary material

445_2018_1200_MOESM1_ESM.docx (15 kb)
Online Resource 1 Methods of textural, mineralogical, and chemical analysis (DOCX 14 kb)
445_2018_1200_MOESM2_ESM.xlsx (25 kb)
Online Resource 2 FUC-S6 EPMA glass dataset (XLSX 25 kb)
445_2018_1200_MOESM3_ESM.xlsx (35 kb)
Online Resource 3 FUC-S6 LA-ICP-MS glass dataset (XLSX 35 kb)
445_2018_1200_MOESM4_ESM.xlsx (30 kb)
Online Resource 4 Similarity coefficient between glass composition in studied tephra layers and reference data in the literature. (XLSX 29 kb)

References

  1. Albert PG, Tomlinson EL, Smith VC, di Roberto A, Todman A, Rosi M, Marani M, Muller W, Menzies MA (2012) Marine-continental tephra correlations: volcanic glass geochemistry from the Marsili Basin and the Aeolian Islands, Southern Tyrrhenian Sea, Italy. J Volcanol Geotherm Res 229:74-94:74–94.  https://doi.org/10.1016/j.jvolgeores.2012.03.009 CrossRefGoogle Scholar
  2. Albert PG, Tomlinson EL, Smith VC, di Traglia F, Pistolesi M, Morris A, Donato P, de Rosa R, Sulpizio R, Keller J, Rosi M, Menzies M (2017) Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: a proximal database for tephrochronology. J Volcanol Geotherm Res 336:81–107.  https://doi.org/10.1016/j.jvolgeores.2017.02.008 CrossRefGoogle Scholar
  3. Andria MC (2008) L’evoluzione del sistema magmatico dell’isola d’Ischia Italia meridionale negli ultimi 10ka. PhD Thesis. 140 ppGoogle Scholar
  4. Bertrand S, Araneda A, Vargas P, Jana P, Fagel N, Urrutia R (2012) Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: insights from Chilean Patagonia. Quat Geochronol 12:23–29.  https://doi.org/10.1016/j.quageo.2012.06.003 CrossRefGoogle Scholar
  5. Bourne AJ, Lowe JJ, Trincardi F, Asioli A, Blockley SPE, Wulf S, Matthews IP, Piva A, Vigliotti L (2010) Distal tephra record for the last ca 105000 years from core PRAD 1–2 in the central Adriatic Sea: implications from marine tephrostratigraphy. Quat Sci Rev 29(23-24):3079–3094.  https://doi.org/10.1016/j.quascirev.2010.07.021 CrossRefGoogle Scholar
  6. Bourne AJ, Abbott PM, Albert PG, Cook E, Pearce NJG, Ponomareva V, Svensson A, Davies SM (2016) Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. Sci Rep 6(1).  https://doi.org/10.1038/srep29837
  7. Calanchi N, Gasparotto G, Romagnoli C (1994) Glass chemistry in volcaniclastic sediments of ODP Leg 107 Site 650 sedimentary sequence: provenance and chronological implications. J Volcanol Geotherm Res 60(1):59–85.  https://doi.org/10.1016/0377-0273(94)90097-3 CrossRefGoogle Scholar
  8. Calanchi N, Dinelli E, Lucchini F, Mordenti A (1996) Chemostratigraphy of the Late Quaternary sediments from Lake Albano and Central Adriatic Sea cores (PALICLAS project). Mem Ist Ital Idrobiol 55(1):247–263.  https://doi.org/10.1016/j.jvolgeores.2008.06.008 Google Scholar
  9. Calanchi N, Cattaneo A, Dinelli E, Gasparotto G, Lucchini F (1998) Tephra layers in Late Quaternary sediments of the Central Adriatic Sea. Mar Geol 149(1-4):191–209.  https://doi.org/10.1016/S0025-3227(98)00030-9 CrossRefGoogle Scholar
  10. Calanchi N, Dinelli E (2008) Tephrostratigraphy of the last 170 ka in sedimentary successions from the Adriatic Sea. J Volcanol Geotherm Res 177(1):81–95.  https://doi.org/10.1016/j.jvolgeores.2008.06.008 CrossRefGoogle Scholar
  11. Caron B, Siani G, Sulpizio R, Zanchetta G, Paterne M, Santacroce R, Tema E, Zanella E (2012) Late Pleistocene to Holocene tephrostratigraphic record from the Northern Ionian Sea. Mar Geol 311-314:41–51.  https://doi.org/10.1016/j.margeo.2012.04.001 CrossRefGoogle Scholar
  12. Cavinato GP, Carusi C, Dall’Asta M, Miccadei E, Piacentini T (2002) Sedimentary and tectonic evolution of Plio-Pleistocene alluvial lacustrine deposits of Fucino Basin (central Italy). Sed Geology 148(1-2):29–59.  https://doi.org/10.1016/S0037-0738(01)00209-3 CrossRefGoogle Scholar
  13. Cramp A, Vitaliano CJ, Collins MB (1989) Identification and dispersion of the Campanian ash layer (Y-5) in the sediments of the Eastern Mediterranean. Geo-Mar Lett 9(1):19–25.  https://doi.org/10.1007/BF02262814 CrossRefGoogle Scholar
  14. Davies SM (2015) Cryptotephras: the revolution in correlation and precision dating. J Quat Sci 30(2):114–130.  https://doi.org/10.1002/jqs.2766 CrossRefGoogle Scholar
  15. De Beaulieu J-L, Brugiapaglia E, Joannin S et al (2017) Lateglacial-Holocene abrupt vegetation changes at Lago Trifoglietti in Calabria, Southern Italy: the setting of ecosystems in a refugial zone. Quat Sci Rev 158:44–57.  https://doi.org/10.1016/j.quascirev.2016.12.013 CrossRefGoogle Scholar
  16. De Benedetti AA, Funiciello R, Giordano G, Diano G, Caprilli E, Paterne M (2008) Volcanology, history and myths of the lake Albano maar (Colli Albani volcano, Italy). J Volcanol Geotherm Res 176(3):387–406.  https://doi.org/10.1016/j.jvolgeores.2008.01.035 CrossRefGoogle Scholar
  17. De Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ky. In: Groppelli G, Viereck-Goette L (eds) Stratigraphy and geology of volcanic areas. Geol Soc Am Special Pap 464, pp 193–241.  https://doi.org/10.1130/2010.2464(10)
  18. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133(1):157–170.  https://doi.org/10.1016/S0377-0273(03)00396-2 CrossRefGoogle Scholar
  19. Di Roberto A, Rosi M, Bertagnini A, Marani MP, Gamberi F, Del Principe A (2008) Deep water gravity core from the Marsili Basin (Tyrrhenian Sea) records Pleistocene–Holocenic explosive events and instabilities of the Aeolian Island Archipelago (Italy). J Volcanol Geotherm Res 177(1):133–144.  https://doi.org/10.1016/j.jvolgeores.2008.01.009 CrossRefGoogle Scholar
  20. Di Vito MA, Sulpizio R, Zanchetta G, D’Orazio M (2008) The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J Volcanol Geotherm Res 177(1):19–48.  https://doi.org/10.1016/j.jvolgeores.2007.11.019 CrossRefGoogle Scholar
  21. Freda C, Gaeta M, Karner DB et al (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills Central Italy). Bull Volcanol 68(6):567–591.  https://doi.org/10.1007/s00445-005-0033-6 CrossRefGoogle Scholar
  22. Frezzotti M, Narcisi B (1996) Late Quaternary tephra-derived paleosols in central Italy’s carbonate Apennine Range: stratigraphical and paleoclimatological implications. Quat Int 34–36:147–153.  https://doi.org/10.1016/1040-6182(95)00079-8 CrossRefGoogle Scholar
  23. Galadini F, Galli P (1999) The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (Central Italy): implications for active tectonics in the central Apennines. Tectonophysics 308(1-2):143–170.  https://doi.org/10.1016/S0040-1951(99)00091-8 CrossRefGoogle Scholar
  24. Galadini F, Messina P (1994) Plio-Quaternary tectonics of the Fucino basin and surroundings areas (central Italy). Giorn Geol 56:73–99Google Scholar
  25. Galli P, Giaccio B, Messina P, Peronace E (2016) Three magnitude 7 earthquakes on a single fault in central Italy in 1400 years, evidenced by new palaeoseismic results. Terra Nova 28(2):146–154.  https://doi.org/10.1111/ter.12202 CrossRefGoogle Scholar
  26. Giaccio B, Sposato A, Gaeta M, Marra F, Palladino DM, Taddeucci J, Barbieri M, Messina P, Rolfo MF (2007) Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quart Int 171–172:160–178.  https://doi.org/10.1016/j.quaint.2006.10.013 CrossRefGoogle Scholar
  27. Giaccio B, Isaia R, Fedele FG et al (2008) The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe. J Volcanol Geotherm Res 177(1):208–226.  https://doi.org/10.1016/j.jvolgeores.2007.10.007 CrossRefGoogle Scholar
  28. Giaccio B, Marra F, Hajdas I, Karner DB, Renne PR, Sposato A (2009) 40Ar/39Ar and 14C geochronology of the Albano maar deposits: implications for defining the age and eruptive style of the most recent explosive activity at Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 185(3):203–213.  https://doi.org/10.1016/j.jvolgeores.2009.05.011 CrossRefGoogle Scholar
  29. Giaccio B, Regattieri E, Zanchetta G, Wagner B, Galli P, Mannella G, Niespolo E, Peronace E, Renne PR, Nomade S, Cavinato GP, Messina P, Sposato A, Boschi C, Florindo F, Marra F, Sadori L (2015) A key continental archive for the last 2 Ma of climatic history in central Mediterranean area: a preliminary report on the Fucino deep-drilling project central Italy. Sci Drill 20:13–19.  https://doi.org/10.5194/sd-20-13-2015 CrossRefGoogle Scholar
  30. Giaccio B, Niespolo EM, Pereira A, Nomade S, Renne PR, Albert PG, Arienzo I, Regattieri E, Wagner B, Zanchetta G, Gaeta M, Galli P, Mannella G, Peronace E, Sottili G, Florindo F, Leicher N, Marra F, Tomlinson EL (2017a) First integrated tephrochronological record for the last ~190 kyr from the Fucino Quaternary lacustrine succession central Italy. Quat Sci Rev 158:211–234.  https://doi.org/10.1016/j.quascirev.2017.01.004 CrossRefGoogle Scholar
  31. Giaccio B, Hajdas I, Isaia R, Deino A, Nomade S (2017b) High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Nat Sci Rep 7:45940.  https://doi.org/10.1038/srep45940 CrossRefGoogle Scholar
  32. Gillot PY, Chiesa S, Pasquare G, Vezzoli L (1982) < 33 000 yr K/Ar dating of the volcanotectonic horst of the isle of Ischia, Gulf of Naples. Nature 229:242CrossRefGoogle Scholar
  33. Giordano G, the CARG Team (2010) Stratigraphy, volcano-tectonics and evolution of the Colli Albani volcanic field. In: Finiciello R, Giordano G (eds) The Colli Albani volcano. Geol Soc London, Spec IAVCEI Publ 3:43–98.  https://doi.org/10.1144/IAVCEl003.4
  34. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155(1-2):49–80.  https://doi.org/10.1016/j.jvolgeores.2006.02.009 CrossRefGoogle Scholar
  35. Giraudi C (1988) Evoluzione geologica della Piana del Fucino (Abruzzo) negli ultimi 30.000 anni. Il Quaternario 1:31–59Google Scholar
  36. Giraudi C (1989) Lake levels and climate for the last 30,000 years in the Fucino area (Abruzzo-Central Italy)—a review. Palaeogeogr Palaeoclimatol Palaeoecol 70(1-3):249–260.  https://doi.org/10.1016/0031-0182(89)90094-1 CrossRefGoogle Scholar
  37. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24.  https://doi.org/10.1007/s00445-006-0052-y CrossRefGoogle Scholar
  38. Jensen BJL, Pyne-O’Donnell S, Plunkett G, Froese DG, Hughes PDM, Sigl M, McConnell JR, Amesbury MJ, Blackwell PG, van den Bogaard C, Buck CE, Charman DJ, Clague JJ, Hall VA, Koch J, Mackay H, Mallon G, McColl L, Pilcher JR (2014) Transatlantic distribution of the Alaskan White River Ash. Geology 42(10):875–878.  https://doi.org/10.1130/g35945.1 CrossRefGoogle Scholar
  39. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200000 yr as recorded in deep-sea sediments. Geol Soc Am Bull 89(4):591–604.  https://doi.org/10.1130/0016-7606(1978)89<591:EVAITM>2.0.CO;2 CrossRefGoogle Scholar
  40. Lane CS, Cullen VL, White D, Bramham-Law CWF, Smith VC (2014) Cryptotephra as a dating and correlation tool in archaeology. J Archaeol Sci 42:42–50.  https://doi.org/10.1016/j.jas.2013.10.033 CrossRefGoogle Scholar
  41. Le Maitre RW, Bateman P, Dudek A et al (eds) (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford, p 193Google Scholar
  42. Leicher N, Zanchetta G, Sulpizio R, Giaccio B, Wagner B, Nomade S, Francke A, Del Carlo P (2016) First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania). Biogeosciences 13(7):2151–2178.  https://doi.org/10.5194/bg-13-2151-2016 CrossRefGoogle Scholar
  43. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6(2):107–153.  https://doi.org/10.1016/j.quageo.2010.08.003 CrossRefGoogle Scholar
  44. Lowe DJ (2016) Connecting synchronizing and dating with tephras: principles and applications of tephrochronology in Quaternary research. In: Vandergoes MJ, Rogers KM, Turnbull J, Howarth J, Keller E, Cowan H (eds) 13th Quaternary techniques short course—measuring change and reconstructing past environments. National Isotope Centre GNS Science Lower Hutt, pp 1–31Google Scholar
  45. Lowe DJ, Alloway BV (2014) Tephrochronology. In: Rink WJ, Thompson JW (eds) Encyclopaedia of scientific dating methods. Springer, Dordrecht, pp 783–799Google Scholar
  46. Lowe JJ, Blockley SPE, Trincardi F, Asioli A, Cattaneo A, Matthews IP, Pollard M, Wulf S (2007) Age modelling of late Quaternary marine sequences from the Adriatic: towards improved precision and accuracy using volcanic event stratigraphy. Cont Shelf Res 27(3-4):560–582.  https://doi.org/10.1016/j.csr.2005.12.017 CrossRefGoogle Scholar
  47. Lowe DJ, Ramsey CB, Housley RA, Lane CS, Tomlinson EL (2015) The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka. Quat Sci Rev 118:1–17.  https://doi.org/10.1016/j.quascirev.2015.04.006 CrossRefGoogle Scholar
  48. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet A-V, Miras Y, Millet L, Bossuet G, Peyron O, Brugiapaglia E, Leroux A (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26(13-14):1736–1758.  https://doi.org/10.1016/j.quascirev.2007.04.014 CrossRefGoogle Scholar
  49. Magri D, Sadori L (1999) Late Pleistocene and Holocene pollen stratigraphy at Lago di Vico, central Italy. Veg Hist Archaeobotany 8(4):247–260.  https://doi.org/10.1007/BF01291777 CrossRefGoogle Scholar
  50. Marciano R, Munno R, Petrosino P, Santo AP, Villa I (2008) Late quaternary tephra layers along the Cilento coastline (southern Italy). J Volcanol Geotherm Res 177(1):227–243.  https://doi.org/10.1016/j.jvolgeores.2007.11.009 CrossRefGoogle Scholar
  51. Marra F, Gaeta M, Giaccio B et al (2016) Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District. Geophys Res Lett 43(13):6898–6906.  https://doi.org/10.1002/2016GL069518 CrossRefGoogle Scholar
  52. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3-4):223–253.  https://doi.org/10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  53. Mercier N (1993) The thermo-luminesence dating technique: applications and possibilities. Abstract INQUA Symposium, Rome, 52Google Scholar
  54. Morabito S, Petrosino P, Milia A, Sprovieri M, Tamburrino S (2014) A multidisciplinary approach for reconstructing the stratigraphic framework of the last 40 ka in a bathyal area of the eastern Tyrrhenian Sea. Glob Planet Chang 123:121–138.  https://doi.org/10.1016/j.gloplacha.2014.10.005 CrossRefGoogle Scholar
  55. Nakanishi T, Torii M, Yamasaki K et al (2017) Tephra identification and radiocarbon chronology of sediment from Paitan Lake at the northern part of Luzon Central Plain, Philippines. Quat Int 456:210–216.  https://doi.org/10.1016/j.quaint.2017.08.047 CrossRefGoogle Scholar
  56. Narcisi BM (1994) Caratteristiche e possibile provenienza di due livelli piroclastici nei sedimenti del Pleistocene superiore della piana del Fucino (Italia Centrale). Rendiconti Lincei 5(2):115–123.  https://doi.org/10.1007/BF03001611 CrossRefGoogle Scholar
  57. Narcisi BM (1996) Tephrochronology of a late quaternary lacustrine record from the Monticchio Maar (Vulture Volcano, southern Italy). Quat Sci Rev 15(2-3):155–165.  https://doi.org/10.1016/0277-3791(95)00045-3 CrossRefGoogle Scholar
  58. Orsi G, Piochi M, Campajola L, D’Onofrio A, Gialanella L, Terrasi F (1996) 14C geochronological constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years. J Volcanol Geotherm Res 71(2-4):249–257.  https://doi.org/10.1016/0377-0273(95)00067-4 CrossRefGoogle Scholar
  59. Pappalardo L, Civetta L, D'Antonio M et al (1999) Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and Neapolitan Yellow Tuff eruption. J Volcanol Geotherm Res 91(2–4):141–166.  https://doi.org/10.1016/S0377-0273(99)00033-5 CrossRefGoogle Scholar
  60. Patacca E, Scandone P (2007) Geology of the Southern Apennines. Boll Soc Geol Ital 7:75–119Google Scholar
  61. Paterne M, Guichard F, Labeyrie J, Gillot FY, Duplessy JC (1986) Tyrrhenian sea tephrochronology of the oxygen isotope record for the past 60000 years. Mar Geol 72(3-4):259–285.  https://doi.org/10.1016/0025-3227(86)90123-4 CrossRefGoogle Scholar
  62. Paterne M, Guichard F, Labeyrie J (1988) Esplosive activity of the south Italian volcanoes during the past 80000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34(3-4):153–172.  https://doi.org/10.1016/0377-0273(88)90030-3 CrossRefGoogle Scholar
  63. Petrelli M, Morgavi D, Vetere F, Perugini D (2016a) Elemental imaging and petro-volcanological applications of an improved laser ablation inductively coupled quadrupole plasma mass spectrometry. Period Miner 85:25–39.  https://doi.org/10.2451/2015PM0465 Google Scholar
  64. Petrelli M, Laeger K, Perugini D (2016b) High spatial resolution trace element determination of geological samples by laser ablation quadrupole plasma mass spectrometry: implications for glass analysis in volcanic products. Geosci J 20(6):851–863.  https://doi.org/10.1007/s12303-016-0007-z CrossRefGoogle Scholar
  65. Poli S, Chiesa S, Gillot P-Y, Gregnanin A, Guichard F (1987) Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples Italy): evidence of successive magmatic cycles. Contrib Mineral Petrol 95(3):322–335.  https://doi.org/10.1007/BF00371846 CrossRefGoogle Scholar
  66. Ponomareva V, Portnyagin M, Davies SM (2015) Tephra without Borders: Far-Reaching Clues into Past Explosive Eruptions. Front Earth Sci 3.  https://doi.org/10.3389/feart.2015.00083
  67. Ramrath A, Zolitschka B, Wulf S, Negendank FW (1999) Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grade di Monticchio). Quat Sci Rev 18(7):977–992.  https://doi.org/10.1016/S0277-3791(99)00009-8 CrossRefGoogle Scholar
  68. Riede F, Thastrup MB (2013) Tephra tephrochronology and archaeology—a (re-) view from Northern Europe. Herit Sci 1(1):1–17.  https://doi.org/10.1186/2050-7445-1-15 CrossRefGoogle Scholar
  69. Ryan WBF, Carbotte SM, Coplan JO, O'Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(3):Q03014.  https://doi.org/10.1029/2008GC002332 CrossRefGoogle Scholar
  70. Sarna-Wojcicki AM, Bowman HR, Meyer CE et al (1984) Chemical analyses correlations and ages of upper Pliocene and Pleistocene ash layers of east–central and southern California. US Geological Survey Professional Paper 1293Google Scholar
  71. Schmidt R, Psenner R, Müller J, Indinger P, Kamenik C (2002) Impact of late glacial climate variations on stratification and trophic state of the meromictic lake Längsee (Austria): validation of a conceptual model by multi proxy studies. J Limnol 61(1):49–60.  https://doi.org/10.4081/jlimnol.2002.49 CrossRefGoogle Scholar
  72. Shane PA (2000) Tephrochronology: a New Zealand case study. Earth-Sci Rev 49(1-4):223–259.  https://doi.org/10.1016/S0012-8252(99)00058-6 CrossRefGoogle Scholar
  73. Siani G, Sulpizio R, Paterne M, Sbrana A (2004) Tephrostratigraphy study for the last 18000 14C years in a deep-sea sediment sequence for the South Adriatic. Quat Sci Rev 23(23-24):2485–2500.  https://doi.org/10.1016/j.quascirev.2004.06.004 CrossRefGoogle Scholar
  74. Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30(25-26):3638–3660.  https://doi.org/10.1016/j.quascirev.2011.07.012 CrossRefGoogle Scholar
  75. Smith VC, Isaia R, Engwell SL, Albert PG (2016) Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption. Bull Volcanol 78(6):45.  https://doi.org/10.1007/s00445-016-1037-0 CrossRefGoogle Scholar
  76. Soligo M, Tuccimei P, Giordano G, Funiciello R, De Rita D (2003) New U-series dating of a carbonate level underlying the peperino albano phreatomagmatic ignimbrite (Colli Albani, Italy). Ital J Quat Sci Spec INQUA, 16(1bis):115–120Google Scholar
  77. Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180(2-4):189–202.  https://doi.org/10.1016/j.jvolgeores.2008.07.022 CrossRefGoogle Scholar
  78. Stewart C, Johnston DM, Leonard G, Horwell CJ, Thordarsson T, Cronin S (2006) Contamination of water supplies by volcanic ash fall: a literature review and simple impact model. J Volcanol Geotherm Res 158(3-4):296–306.  https://doi.org/10.1016/j.jvolgeores.2006.07.002 CrossRefGoogle Scholar
  79. Sulpizio R, Zanchetta G, Paterne M, Siani G (2003) A review of tephrostratigraphy in central and southern Italy during the last 65 ka. Il Quaternario 16:91–108Google Scholar
  80. Sulpizio R, Zanchetta G, D' Orazio M, Vogel H, Wagner B (2010) Tephrostratigrapy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences 7(10):3273–3288.  https://doi.org/10.5194/bg-7-3273-2010 CrossRefGoogle Scholar
  81. Tamburrino S, Insinga DD, Pelosia N, Kissel C, Laj C, Capotondi L, Sprovieri M (2016) Tephrochronology of a ~ 70 ka-long marine record in the Marsili Basin (southern Tyrrhenian Sea). J Volcanol Geotherm Res 327:23–39.  https://doi.org/10.1016/j.jvolgeores.2016.07.002 CrossRefGoogle Scholar
  82. Thunnell R, Federman A, Sparks S, Williams D (1979) The origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quat Res 12(02):241–253.  https://doi.org/10.1016/0033-5894(79)90060-7 CrossRefGoogle Scholar
  83. Tomlinson EL, Arienzo I, Civetta L et al (2012) Geochemistry of the Phlegrean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim Cosmochim Acta 93:102–128.  https://doi.org/10.1016/j.gca.2012.05.043 CrossRefGoogle Scholar
  84. Tomlinson EL, Albert PG, Wulf S, Brown RJ, Smith VC, Keller J, Orsi G, Bourne AJ, Menzies MA (2014a) Age and geochemistry of tephra layers from Ischia Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. J Volcanol Geotherm Res 289:22–39.  https://doi.org/10.1016/j.jvolgeores.2014.09.006 CrossRefGoogle Scholar
  85. Tomlinson EL, Arienzo I, Civetta L et al (2014b) Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim Cosmochim Acta 93:102–128.  https://doi.org/10.1016/j.gca.2012.05.043 CrossRefGoogle Scholar
  86. Ton-That T, Singer B, Paterne M (2001) 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth Planet Sci Lett 184(3-4):645–658.  https://doi.org/10.1016/S0012-821X(00)00358-7 CrossRefGoogle Scholar
  87. Vezzoli L (1991) Tephra layers in Bannock Basin (eastern Mediterranean). Mar Geol 100(1-4):21–34.  https://doi.org/10.1016/0025-3227(91)90221-O CrossRefGoogle Scholar
  88. Villa IM, Calanchi M, Dielli E, Lucchini F (1999) Age and evolution of the Albano crater lake (Roman Volcanic Province). Acta Vulcanol 11:305–310Google Scholar
  89. Vogel H, Zanchetta G, Sulpizio R, Wagner, Nowaczyk N (2010) A tephrostratigraphic record for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. J Quat Sci 25(3):320–338.  https://doi.org/10.1002/jqs.1311 CrossRefGoogle Scholar
  90. Watts WA, Allen JRM, Huntley B (1996) Vegetation history and palaeoclimate of the last glacial period at Lago Grande di Monticchio, southern Italy. Quat Sci Rev 15(2-3):133–153.  https://doi.org/10.1016/0277-3791(95)00093-3 CrossRefGoogle Scholar
  91. Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman JB, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth 45–46:5–23CrossRefGoogle Scholar
  92. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122(1):7–30.  https://doi.org/10.1016/j.quaint.2004.01.028 CrossRefGoogle Scholar
  93. Wulf S, Brauer A, Mingram B, Zolitschka B, Negendark JKW (2006) Distal tephras in the sediments of Monticchio maar lakes. In: Principe C (ed) La geologia del Monte Vulture, Regione Basilicata, Consiglio Nazionale delle Ricerche, pp 105–122Google Scholar
  94. Wulf S, Kraml M, Keller J (2008) Towards a detailed distal tephrostratigraphy in the Central Mediterranean: the last 20000 yrs record of Lago Grande di Monticchio. J Volcanol Geotherm Res 117(1):118–132.  https://doi.org/10.1016/j.jvolgeores.2007.10.009 CrossRefGoogle Scholar
  95. Wulf S, Keller J, Paterne M et al (2012) The 100–133 ka record of Ital-ian explosive volcanism and revised tephrochronology of Lago Grande di Monticchio. Quat Sci Rev 58:104–123.  https://doi.org/10.1016/j.quascirev.2012.10.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessio Di Roberto
    • 1
  • Alessandra Smedile
    • 2
  • Paola Del Carlo
    • 1
  • Paolo Marco De Martini
    • 2
  • Marina Iorio
    • 3
  • Maurizio Petrelli
    • 4
  • Daniela Pantosti
    • 2
  • Stefania Pinzi
    • 2
  • Alessandro Todrani
    • 5
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PisaPisaItaly
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1RomeItaly
  3. 3.Istituto per l’Ambiente Marino Costiero, CNRNaplesItaly
  4. 4.Department of Physics and GeologyUniversità di PerugiaPerugiaItaly
  5. 5.Department of SciencesUniversità di Roma TRERomeItaly

Personalised recommendations