Skip to main content

Advertisement

Log in

Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40–30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids (X N2 = 0.01–0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11–1.00 and 0.75–0.65 g/cm3) and HT (d = 1.04–1.11 and 0.75–0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60–65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10–12 km (or 0.26–0.34 GPa). Following our model, the 40–30-ka-old volcanic activity of El Hierro is related to this mantle-based magma system, a system that we propose fed the recent 2011–2012 eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acosta J, Uchupi E, Muñoz A, Herranz P, Palomo C, Ballesteros M, Working ZE (2005) Geologic evolution of the Canarian Islands of Lanzarote, Fuerteventura, Gran Canaria and La Gomera and comparison of landslides at these islands with those at Tenerife, La Palma and El Hierro. Mar Geophys Res 24:1–40

    Article  Google Scholar 

  • Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–332

    Article  Google Scholar 

  • Andersen T, Burke EJ, Neumann ER (1995) Nitrogen-rich fluid in the upper mantle: fluid inclusions in spinel dunite from Lanzarote, Canary Islands. Contrib Mineral Petrol 120:20–28

    Article  Google Scholar 

  • Anguita F, Hernán F (1975) A propagating fracture model versus a hot spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19

    Article  Google Scholar 

  • Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geotherm Res 103:1–26

    Article  Google Scholar 

  • Araña V, Ortiz R (1991) The Canary Islands: tectonics, magmatism and geodynamic framework. In: Kampunzu A, Lubala R (eds) Magmatism in extensional structures setting: the Phanerozoic African Plate. Springer Verlag, pp. 209–249

  • Bakker RJ (2003) PackageFLUIDS1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Barker AK, Troll VR, Carracedo JC, Nicholls PA (2015) The magma plumbing system for the 1971 Teneguía eruption on La Palma, Canary Islands. Contrib Mineral Petrol 170:5–6

    Article  Google Scholar 

  • Becerril L, Cappello A, Galindo I, Neri M, Del Negro C (2013a) Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain). J Volcanol Geotherm Res 257:21–30

    Article  Google Scholar 

  • Becerril L, Galindo I, Gudmundsson A, Morales JM (2013b) Depth of origin of magma in eruptions. Sci Rep 3:1–6. https://doi.org/10.1038/srep02762

    Article  Google Scholar 

  • Becerril L, Galindo I, Martí J, Gudmundsson A (2015) Three-armed rifts or masked radial pattern of eruptive fissures? The intriguing case of El Hierro Volcano (Canary Islands). Tectonophysics 647:33–47

    Article  Google Scholar 

  • Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian archipelago, Italy): an open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108:2336–2342

    Article  Google Scholar 

  • Bodnar RJ (2003) Introduction to aqueous-electrolyte fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Ass Canada Short Course Series 32, pp 81–100

  • Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions—VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorph Geol 7:229–242

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Campione M, Malaspina N, Frezzotti ML (2015) Threshold size for fluid inclusion decrepitation. J Geophys Res Solid Earth 120:7396–7402

    Article  Google Scholar 

  • Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19

    Article  Google Scholar 

  • Carracedo JC, Day S, Guillou H, Rodríguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604

    Article  Google Scholar 

  • Carracedo JC, Badiola ER, Guillou H, de La Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro (Canary Islands). Estudios Geol 57:175–273

    Article  Google Scholar 

  • Carracedo JC, Perez-Torrado FJ, Rodriguez-Gonzalez A, Fernandez-Turiel JL, Klügel A, Troll VR, Wiesmaier S (2012) The ongoing volcanic eruption of El Hierro, Canary Islands. Eos 93:89–90

    Article  Google Scholar 

  • Carracedo JC, Troll VR, Zaczek K, Rodriguez-Gonzalez A, Soler V, Deegan FM (2015) The 2011–2012 submarine eruption off El Hierro, Canary Islands: new lessons in oceanic island growth and volcanic crisis management. Earth-Sci Rev 150:168–200

    Article  Google Scholar 

  • Dasgupta R, Jackson MG, Lee C-TA (2010) Major element chemistry of ocean island basalts—conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett 289:377–392

    Article  Google Scholar 

  • De Vivo B, Frezzotti ML, Lima A, Trigila R (1988) Spinel lherzolite nodules from Oahu Island (Hawaii): a fluid inclusion study. Bull Minéral 111:307–319

    Google Scholar 

  • Decker RW, Wright TL, Stauffer, S (1987). Volcanism in Hawaii. US Gov Printing Office, p 1606

  • Duggen S, Hoernle K, Hauff F, Klügel A, Bouabdellah M, Thirlwall MF (2009) Flow of canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 37:283–286

    Article  Google Scholar 

  • Duschek W, Kleinrahm R, Wagner W (1990) Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa. J Chem Thermod 22:827–840

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Frezzotti ML, Peccerillo A (2004) Fluid inclusion and petrological studies elucidate reconstruction of magma conduits. Eos 85:157–160

    Article  Google Scholar 

  • Frezzotti ML, Touret JL (2014) CO2, carbonate-rich melts, and brines in the mantle. Geosci Front 5:697–710

    Article  Google Scholar 

  • Frezzotti ML, De Vivo B, Clocchiatti R (1991) Melt-mineral-fluid interactions in ultramafic nodules from alkaline lavas of Mount Etna (Sicily, Italy): melt and fluid inclusion evidence. J Volcanol Geotherm Res 47:209–219

    Article  Google Scholar 

  • Frezzotti ML, Touret JL, Lustenhouwer WJ, Neumann ER (1994) Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary Islands: tracking the mantle metasomatic fluids. Eur J Mineral 6:805–817

    Article  Google Scholar 

  • Frezzotti ML, Andersen T, Neumann ER, Simonsen SL (2002a) Carbonatite melt–CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid–rock interaction in the upper mantle. Lithos 64:77–96

    Article  Google Scholar 

  • Frezzotti ML, Touret JL, Neumann ER (2002b) Ephemeral carbonate melts in the upper mantle. Eur J Mineral 14:891–904

    Article  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Article  Google Scholar 

  • Füster J (1975) Las Islas Canarias: un ejemplo de evolución temporal y espacial del vulcanismo oceánico. Estud Geol 31:439–463

    Google Scholar 

  • Garrabos Y, Tufeu R, Le Neindre B, Zalczer G, Beysens D (1980) Rayleigh and Raman scattering near the critical point of carbon dioxide. J Chem Phys 72:4637–4651

    Article  Google Scholar 

  • Gee MJR, Masson DG, Watts AB, Mitchell NC (2001) Offshore continuation of volcanic rift zones, El Hierro, Canary Islands. J Volcanol Geotherm Res 105:107–119

    Article  Google Scholar 

  • Geyer A, Martí J (2010) Tectonophysics the distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems. Tectonophysics 483:310–326

    Article  Google Scholar 

  • González PJ, Samsonov SV, Pepe S, Tiampo KF, Tizzani P, Casu F, Sansosti E (2013) Magma storage and migration associated with the 2011–2012 El Hierro eruption: implications for crustal magmatic systems at oceanic island volcanoes. J Geophys Res Solid Earth 118:4361–4377

    Article  Google Scholar 

  • Gudmundsson A (1987) Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland. Tectonophysics 139:295–308

    Article  Google Scholar 

  • Guillou H, Carracedo JC, Torrado FP, Badiola ER (1996) K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geother Res 73:141–155

    Article  Google Scholar 

  • Hansteen TH, Klügel A, (2008) Fluid inclusion thermobarometry as a tracer for magmatic processes. In: Putirka KD, Tepley FJ (eds) Reviews in Mineralogy Min Soc Amer 149:143–177

  • Hansteen TH, Andersen T, Neumann ER, Jelsma H (1991) Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism. Contrib Mineral Petrol 107:242–254

    Article  Google Scholar 

  • Hansteen TH, Klügel A, Schmincke HU (1998) Multi-stage magma ascent beneath the Canary Islands: evidence from fluid inclusions. Contrib Mineral Petrol 132:48–64

    Article  Google Scholar 

  • Hoernle KAJ (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Article  Google Scholar 

  • Hoernle K, Schmincke HU (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626

    Article  Google Scholar 

  • Holloway JR (1977). Fugacity and activity of molecular species in supercritical fluids. In: Fraser DG (ed) Thermodynamics in geology, Dordrecht-Holland, pp 161–181

  • Holloway JR (1981) Compositions and volumes of supercritical fluids. In: Hollister L, Crawford ML (eds) Fluid inclusions: application to petrology. Min Soc Canada Short Course Handbook, pp. 13–38

  • IGME (2010a) Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1105- II, Valverde, pp, 96

  • IGME (2010b) Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1105- III, Sabinosa, pp, 71

  • IGME (2010c) Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1105- IV, Frontera, pp, 84

  • IGME (2010d) Mapa Geológico de España, Escala 1:25.000. Isla de El Hierro. Hoja 1108- I/II, La Restinga, pp, 55

  • Kawakami Y, Yamamoto J, Kagi H (2003) Micro-Raman densimeter for CO2 inclusions in mantle-derived minerals. Appl Spectrosc 57:1333–1339

    Article  Google Scholar 

  • Klemd R, van den Kerkhof AM, Horn EE (1992) High-density CO2−N2 inclusions in eclogite-facies metasediments of the Münchberg gneiss complex, SE Germany. Contrib Mineral Petrol 111:409–419

    Article  Google Scholar 

  • Klügel A, Hansteen TH, Galipp K (2005) Magma storage and underplating beneath Cumbre Vieja Volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236:211–226

    Article  Google Scholar 

  • Klügel A, Longpré MA, García-Cañada L, Stix J (2015) Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes. Earth Planet Sci Lett 43:140–149

    Article  Google Scholar 

  • Koehler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Lebas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123:287–298

    Article  Google Scholar 

  • Longpré MA, Chadwick JP, Wijbrans J, Iping R (2011) Age of the El Golfo debris avalanche, El Hierro (Canary Islands): new constraints from laser and furnace 40Ar/ 39Ar dating. J Volcanol Geotherm Res 203:76–80

    Article  Google Scholar 

  • Longpré MA, Klügel A, Diehl A, Stix J (2014) Mixing in mantle magma reservoirs prior to and during the 2011–2012 eruption at El Hierro, Canary Islands. Geology 42:315–318

    Article  Google Scholar 

  • Longpré MA, Stix J, Klügel A, Shimizu N (2017) Mantle to surface degassing of carbon-and sulphur-rich alkaline magma at El Hierro, Canary Islands. Earth Planet Sci Lett 460:268–280

    Article  Google Scholar 

  • López C, Blanco MJ, Abella R, Brenes B, Cabrera Rodríguez VM, Casas B, Domínguez Cerdeña I, Felpeto A, Fernández de Villalta M, del Fresno C, García O, García-Arias MJ, García-Cañada L, Gomis Moreno A, González-Alonso E, Guzmán Pérez J, Iribarren F, López-Díaz R, Luengo-Oroz N, Meletlidis S, Moreno M, Moure D, Pereda de Pablo J, Rodero E, Romero E, Sainz-Maza S, Sentre Domingo MA, Torres PA, Trigo P, Villasante-Marcos V (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011–2012 submarine eruption. Geophys Res Lett 39:L13303

    Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci Rev 81:1–65

    Article  Google Scholar 

  • Marinoni LB, Gudmundsson A (2000) Dykes, faults and palaeostresses in the Teno and Anaga massifs of Tenerife (Canary Islands). J Volcanol Geotherm Res 103:83–103

    Article  Google Scholar 

  • Marinoni LB, Pasquaré G (1994) Tectonic evolution of the emergent part of a volcanic ocean island: Lanzarote, Canary Islands. Tectonophysics 239:111–137

    Article  Google Scholar 

  • Martí J, Castro A, Rodríguez C, Costa F, Carrasquilla S, Pedreira R, Bolos X (2013a) Correlation of magma evolution and geophysical monitoring during the 2011-2012 El Hierro (Canary Islands) submarine eruption. J Petrol 54:1349–1373

    Article  Google Scholar 

  • Martí J, Pinel V, Lõpez C, Geyer A, Abella R, Tárraga M, Rodríguez C (2013b) Causes and mechanisms of the 2011-2012 El Hierro (Canary Islands) submarine eruption. J Geophys Res Solid Earth 118:823–839

    Article  Google Scholar 

  • Martinez-Arevalo C, Mancilla FD, Helffrich G, Garcia A (2013) Seismic evidence of a regional sublithospheric low velocity layer beneath the Canary Islands. Tectonophysics 608:586–599

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Watts B, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57:1–35

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Transact A Math Phys Eng Sci 364:2009–2039

    Article  Google Scholar 

  • Meletlidis S, Roberto A, Di Pompilio M, Bertagnini A, Iribarren I, Felpeto A, Oriano CD (2012) Xenopumices from the 2011 – 2012 submarine eruption of El Hierro (Canary Islands, Spain): constraints on the plumbing system and magma ascent. Geophys Res Lett 39:1–6

    Article  Google Scholar 

  • Michon L, Ferrazzini V, Di Muro A, Villeneuve N, Famin V (2015) Rift zones and magma plumbing system of Piton de la Fournaise Volcano: how do they differ from Hawaii and Etna? J Volcanol Geotherm Res 303:112–129

    Article  Google Scholar 

  • Morgan DJ, Jerram DA, Chertkoff DG, Davidson JP, Pearson DG, Kronz A, Nowell GM (2007) Combining CSD and isotopic microanalysis: magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth Planet Sci Lett 260:419–431

    Article  Google Scholar 

  • Neumann E (1990) Ultramafic and mafic xenoliths from Hierro, Canary Islands: evidence for melt infiltration in the upper mantle. Contrib Mineral Petrol 106:1689–1699

    Google Scholar 

  • Neumann ER, Wulff-Pedersen E, Johnsen K, Andersen T, Krogh E (1995) Petrogenesis of spinel harzburgite and dunite suite xenoliths from Lanzarote, eastern Canary Islands: implications for the upper mantle. Lithos 35:83–107

    Article  Google Scholar 

  • Neumann ER, Wulff-Pedersen E, Pearson NJ, Spencer EA (2002) Mantle xenoliths from Tenerife (Canary Islands): evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism. J Petrol 43:825–857

    Article  Google Scholar 

  • Neumann ER, Griffin WL, Pearson NJ, O'Reilly SY (2004) The evolution of the upper mantle beneath the Canary Islands: information from trace elements and Sr isotope ratios in minerals in mantle xenoliths. J Petrol 45:2573–2612

    Article  Google Scholar 

  • Peccerillo A, Frezzotti ML, De Astis G, Ventura G (2006) Modeling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusion geobarometry, petrology, and geophysics. Geology 34:17–20

    Article  Google Scholar 

  • Pollard DD, Delaney PT, Duffield WA, Endo ET, Okamura AT (1983) Surface deformation in volcanic rift zones. Tectonophysics 94:541–584

    Article  Google Scholar 

  • Robertson AHF, Stillman CJ (1979) Submarine volcanic and associated sedimentary rocks of the Fuerteventura Basal Complex, Canary Islands. Geol Mag 116:203–214

    Article  Google Scholar 

  • Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50:20–40

    Google Scholar 

  • Roedder E (1983) Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine. Earth Planet Sci Lett 66:369–379

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Roedder, E. (1984) Fluid inclusions. Mineral Soc America Rev in Mineral 12, pp 644

  • Rosso KM, Bodnar RJ (1995) Detection limits of CO2 in fluid inclusions using microthermometry and laser Raman spectroscopy and the spectroscopic characterization of CO2. Geochim Cosmochim Acta 59:3961–3975

    Article  Google Scholar 

  • Ryan MP (1987) Neutral buoyancy and the mechanical evolution of magmatic systems. In: Mysen BO (ed) Magmatic processes: physiochemical principles. University Park, Texas, The Geochem Soc, pp 259–287

    Google Scholar 

  • Ryan MP (1988) Structure of active magmatic systems’ Kilauea Volcano, Hawaii. J Geophys Res 93:4213–4248

    Article  Google Scholar 

  • Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and the style of volcanic eruptions. Earth Planet Sci Lett 253:513–529

    Article  Google Scholar 

  • Schmincke HU (1982) Volcanic and chemical evolution of the Canary Islands. In: VonRad U, Hinz K, Sarnthein M and Seibol E (eds) Geology of the northwest African continental margin. Springer Verlag, New York, pp 273–306

  • Schwarz S, Klügel A, Wohlgemuth-Ueberwasser C (2004) Melt extraction pathways and stagnation depths beneath the Madeira and Desertas rift zones (NE Atlantic) inferred from barometric studies. Contrib Mineral Petrol 147:228–240

    Article  Google Scholar 

  • Shaw HR (1980a) The fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 201–264

    Google Scholar 

  • Shaw HR (1980b) The fracture mechanisms of magma transport from the mantle to the surface. Phys Magmat Processes 64:201–264

    Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15

    Article  Google Scholar 

  • Stroncik NA, Klügel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petrol 157:593–607

    Article  Google Scholar 

  • Ulmer P (1986) NORM-program for cation and oxygen mineral norms. Computer Library, Institut für Mineralogie und Petrographie, ETH-Zentrum, Zürich, Switzerland

  • van den Kerkhof AM (1988) The system CO2–CH4–N2 in fluid inclusions: theoretical modelling and geological applications. PhD Dissertation, Amsterdam Free University, pp. 206

  • Viti C, Frezzotti ML (2000) Re-equilibration of glass and CO2 inclusions in xenolith olivine: a TEM study. Am Mineral 85:1390–1396

    Article  Google Scholar 

  • Viti C, Frezzotti ML (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos 55:125–138

    Article  Google Scholar 

  • Vityk MO, Bodnar RJ (1998) Statistical microthermometry of synthetic fluid inclusions in quartz during decompression re-equilibration. Contrib Mineral Petrol 132:149–162

    Article  Google Scholar 

  • Voog DB, Palomé SP, Hirn A, Charvis P, Gallart J, Rousset D, Perroud H (1999) Vertical movements and material transport during hotspot activity: seismic reflection profiling offshore La Réunion. J Geophys Res 104:2855–2874

    Article  Google Scholar 

  • Wanamaker BJ, Evans B (1989) Mechanical re-equilibration of fluid inclusions in San Carlos olivine by power-law creep. Contrib Mineral Petrol 102:102–111

    Article  Google Scholar 

  • Wang CH, Wright RB (1973) Effect of density on the Raman scattering of molecular fluids. I. A detailed study of the scattering polarization, intensity, frequency shift, and spectral shape in gaseous N2. J Chem Phys 59:1706–1712

    Article  Google Scholar 

  • Wells PR (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Article  Google Scholar 

  • Zaczek K, Troll VR, Cachao M, Ferreira F, Deegan FM, Carracedo JC, Meade FC, Burchardt S (2015) Nannofossils in 2011 El Hierro eruptive products reinstate plume model for Canary Islands. Sci Rep 5:7945. https://doi.org/10.1038/srep07945

    Article  Google Scholar 

  • Zanon V, Frezzotti ML (2013) Magma storage and ascent conditions beneath Pico and Faial islands (Azores archipelago): a study on fluid inclusions. Geochem Geophys Geosyst 14:3494–3514

    Article  Google Scholar 

  • Zanon V, Frezzotti ML, Peccerillo A (2003) Magmatic feeding system and crustal magma accumulation beneath Vulcano Island (Italy): evidence from CO2 fluid inclusions in quartz xenoliths. J Geophys Res 108:2298. https://doi.org/10.1029/2002JB002140

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of E.O.’s Ph.D. thesis. We are grateful to L. Becceril, M. Campione, F. Lucchi, N. Malaspina, and V. Zanon for the helpful discussions. We acknowledge A. Risplendente for the assistance during microprobe analyses. Editorial handling by A. Harris and V. Kamenetsky, and reviews by F. Deegan, T. Hansteen, and an anonymous reviewer have considerably improved the manuscript. Funding was provided by the University of Milan Bicocca, FAR-2015 to M.L.F and I.M.V. Raman facilities were provided by the Interdepartmental Center “G. Scansetti” for studies on asbestos and other toxic particulates at the University of Turin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.L. Frezzotti.

Additional information

Editorial responsibility: V.S. Kamenetsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oglialoro, E., Frezzotti, M., Ferrando, S. et al. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions. Bull Volcanol 79, 70 (2017). https://doi.org/10.1007/s00445-017-1152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1152-6

Keywords

Navigation