Skip to main content

Advertisement

Log in

The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

In the period from August 29, 2014, to February 27, 2015, the largest basaltic eruption of the last 200 years in Iceland occurred within the tectonic fissure swarm between the Bárðarbunga-Veiðivötn and the Askja volcanic systems. The eruption took place in the Holuhraun lava field, 45 km northeast of the Bárðarbunga volcano and 20 km south of the Askja volcano. It emplaced over 1.2 km3 dense rock equivalent (DRE) of lava in an area of very low topographic relief. In light of the minimal topographic forcing, lava flow emplacement can be viewed as having been effectively controlled by the lava’s temperature-dependent rheology. Here we combine field and remote sensing data collected during the week of the 17th to 22nd of November 2014 to constrain the lava’s flow path, its velocity, deformation rate and thermal evolution during emplacement. We combine these with measurements of the pure liquid viscosity and the sub-liquidus rheological evolution of the lava during crystallization. Sub-liquidus experiments were performed at a range of constant cooling and shear rates, to mimic the conditions experienced by the lava during emplacement. These data can also be used to infer flow conditions of partly degassed magma within dike-swarms during transport towards the surface. The data show that the effective viscosity of the lava drastically increases until reaching a specific sub-liquidus temperature, the “rheological cutoff temperature” (T cutoff). This departure to high viscosity is a consequence of the onset of crystallization and is found to be primarily controlled by the imposed cooling rate. Our data indicate that shear rate exerts a second-order effect on this rheological departure and T cutoff. We discuss the experimental dataset in the context of the reconstructions of the natural emplacement conditions and describe the implications for the 2014–2015 lava flow field at Holuhraun as well as lava flow modelling in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arzilli F, Carroll MR (2013) Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt. Contrib Mineral Petrol 166(4):1011–1027

    Article  Google Scholar 

  • Azadani AN (2007) Flow enhanced protein crystallization at the air/water interface. ProQuest

  • Barberi F, Brondi F, Carapezza ML, Cavarra L, Murgia C (2003) Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J Volcanol Geotherm Res 123(1–2):231–243

    Article  Google Scholar 

  • Behncke B, Neri M, Nagay A (2005) Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. Spec Papers Geol Soc Am 396:189

    Google Scholar 

  • Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res: Solid Earth (1978–2012) 103(B11):27291–27301

    Article  Google Scholar 

  • Campagnola S, Vona A, Romano C, Giordano G (2016) Crystallization kinetics and rheology of leucite-bearing tephriphonolite magmas from the Colli Albani volcano (Italy). Chem Geol 424:12–29

    Article  Google Scholar 

  • Cashman K (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Mineral Petrol 113(1):126–142

    Article  Google Scholar 

  • Cashman KV, Mangan MT (2014) A century of studying effusive eruptions in Hawai ‘i. Characteristics of Hawaiian Volcanoes 357

  • Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe lava to ‘A’ā. Bull Volcanol 61(5):306–323

    Article  Google Scholar 

  • Cashman K, Soule S, Mackey B, Deligne N, Deardorff N, Dietterich H (2013) How lava flows: new insights from applications of lidar technologies to lava flow studies. Geosphere 9(6):1664–1680

    Article  Google Scholar 

  • Castruccio A, Rust A, Sparks R (2014) Assessing lava flow evolution from post-eruption field data using Herschel–Bulkley rheology. J Volcanol Geotherm Res 275:71–84

    Article  Google Scholar 

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120

    Article  Google Scholar 

  • Chevrel MO, Cimarelli C, deBiasi L, Hanson JB, Lavallée Y, Arzilli F, Dingwell DB (2015) Viscosity measurements of crystallizing andesite from Tungurahua volcano (Ecuador). Geochemistry, Geophysics, Geosystems

  • Coish R, Taylor LA (1979) The effects of cooling rate on texture and pyroxene chemistry in DSDP Leg 34 basalt: a microprobe study. Earth Planet Sci Lett 42(3):389–398

    Article  Google Scholar 

  • Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48

    Article  Google Scholar 

  • Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2015) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. Geological Society, London, Special Publications 426:SP426. 425

  • Coppola D, Ripepe M, Laiolo M, Cigolini C (2017) Modelling satellite-derived magma discharge to explain caldera collapse. Geology:G38866. 38861

  • Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Geol Soc Am Spec Pap 396:209–218

    Google Scholar 

  • Del Negro C, Fortuna L, Herault A, Vicari A (2008) Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull Volcanol 70(7):805–812

    Article  Google Scholar 

  • Dragoni M (1989) A dynamical model of lava flows cooling by radiation. Bull Volcanol 51(2):88–95

    Article  Google Scholar 

  • Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30(3–4):305–325

    Article  Google Scholar 

  • Dragoni M, Piombo A, Tallarico A (1995) A model for the formation of lava tubes by roofing over a channel. J Geophys Res Solid Earth 100(B5):8435–8447

    Article  Google Scholar 

  • Emerson OH (1926) The formation of aa and pahoehoe. Am J Sci 68:109–114

    Article  Google Scholar 

  • Farquharson J, James M, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flowfield at Cordón-Caulle, Chile. J Volcanol Geotherm Res 304:336–348

    Article  Google Scholar 

  • Favalli M, Chirico G, Papale P, Pareschi M, Coltelli M, Lucaya N, Boschi E (2006) Computer simulations of lava flow paths in the town of Goma, Nyiragongo volcano, Democratic Republic of Congo. J Geophys Res: Solid Earth (1978–2012) 111(B6)

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J Geophys Res: Solid Earth (1978–2012) 115(B11)

  • Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2012) Lava flow hazard and risk at Mt. Cameroon volcano. Bull Volcanol 74(2):423–439

    Article  Google Scholar 

  • Flynn LP, Mouginis-Mark PJ (1992) Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophys Res Lett 19(17):1783–1786

    Article  Google Scholar 

  • Gamble RP, Taylor LA (1980) Crystal/liquid partitioning in augite: effects of cooling rate. Earth Planet Sci Lett 47(1):21–33

    Article  Google Scholar 

  • Gibb FG (1974) Supercooling and the crystallization of plagioclase from a basaltic magma. Mineral Mag 39(306):641–653

    Article  Google Scholar 

  • Giordano D, Polacci M, Longo A, Papale P, Dingwell D, Boschi E, Kasereka M (2007) Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo. Geophys Res Lett 34(6)

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134

    Article  Google Scholar 

  • Giordano D, Polacci M, Papale P, Caricchi L (2010) Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid Earth

  • Gíslason S, Stefánsdóttir G, Pfeffer M, Barsotti S, Jóhannsson T, Galeczka I, Bali E, Sigmarsson O, Stefánsson A, Keller N (2015) Environmental pressure from the 2014–15 eruption of Bárðarbunga volcano, Iceland. Geochem Perspect Lett 1:84–93

    Article  Google Scholar 

  • Greeley R, Hyde JH (1972) Lava tubes of the cave basalt, Mount St. Helens, Washington. Geol Soc Am Bull 83(8):2397–2418

    Article  Google Scholar 

  • Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80(3–4):281–292

    Article  Google Scholar 

  • Griffiths R (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32(1):477–518

    Article  Google Scholar 

  • Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62

    Article  Google Scholar 

  • Gualda GA, Ghiorso MS (2015) MELTS_Excel: a Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution. Geochem Geophys Geosyst 16(1):315–324

    Article  Google Scholar 

  • Guðfinnsson GH, Jakobsson S (2014) On the petrology of the Holuhraun lava. In, http://earthice.hi.is/petrology_holuhraun_lava_gudmundur_heidar_gudfinnsson_and_sigurdur_jakobsson

  • Hallworth M, Huppert H, Sparks R (1987) A laboratory simulation of basaltic lava flows. Mod Geol 11:93–107

    Google Scholar 

  • Hammer JE (2006) Influence of fO 2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet Sci Lett 248(3):618–637

    Article  Google Scholar 

  • Harris AJ, Rowland S (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44

    Article  Google Scholar 

  • Harris A, Rowland S (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI 2:33–51

  • Harris A, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. Geol Soc Am Spec Pap 396:125–146

    Google Scholar 

  • Harris AJ, Rhéty M, Gurioli L, Villeneuve N, Paris R (2015) Simulating the thermorheological evolution of channel-contained lava: FLOWGO and its implementation in EXCEL. Geological Society, London, Special Publications 426:SP426. 429

  • Hartley ME, Thordarson T (2013) The 1874–1876 volcano-tectonic episode at Askja, North Iceland: lateral flow revisited. Geochem Geophys Geosyst 14(7):2286–2309

    Article  Google Scholar 

  • Hérault A, Bilotta G, Vicari A, Rustico E, Del Negro C (2011) Numerical simulation of lava flow using a GPU SPH model. Ann Geophys 54(5)

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106(3):351–370

    Article  Google Scholar 

  • Hon K, Gansecki C, Kauahikaua J (2003) The transition from ‘A’a to Pahoehoe crust on flows emplaced during the Pu’u′6′6-Kupaianaha eruption. US Geol Surv Prof Pap 1676:89

    Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Int 39(2):361–383

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS, Arndt NT (1984) Emplacement and cooling of komatiite lavas. Nature 309(5963):19–22

    Article  Google Scholar 

  • Icelandic-Meteorological-Office (2015) Bárðarbunga 2014 - August events. In: Icelandic Meteorological Office, Daily web information in August 2014

  • Ishibashi H (2009) Non-Newtonian behavior of plagioclase-bearing basaltic magma: subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan. J Volcanol Geotherm Res 181(1–2):78–88

    Article  Google Scholar 

  • Ishibashi H, Sato H (2007) Viscosity measurements of subliquidus magmas: alkali olivine basalt from the Higashi-Matsuura district, southwest Japan. J Volcanol Geotherm Res 160(3–4):223–238

    Article  Google Scholar 

  • Ishihara K, Iguchi M, Kamo K (1990) Numerical simulation of lava flows on some volcanoes in Japan. In: Lava flows and domes. Springer, pp 174–207

  • James M, Robson S (2014) Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery. ISPRS J Photogramm Remote Sens 97:160–170

    Article  Google Scholar 

  • Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res: Solid Earth (1978–2012) 103(B11):27303–27323

    Article  Google Scholar 

  • Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u'ō'Ō-KŪpaianaha eruption: a tale of two decades. US Geol Surv Prof Pap 1676:63–87

    Google Scholar 

  • Keszthelyi L (1995) Measurements of the cooling at the base of pahoehoe flows. Geophys Res Lett 22(16):2195–2198

    Article  Google Scholar 

  • Keszthelyi L, McEwen A, Thordarson T (2000) Terrestrial analogs and thermal models for Martian flood. J Geophys Res 105(E6):15,027–015,049

    Article  Google Scholar 

  • Kolzenburg S, Favalli M, Fornaciai A, Isola I, Harris AJL, Nannipieri L, Giordano D (2016a) Rapid updating and improvement of airborne LIDAR DEMs through ground-based SfM 3-D modeling of volcanic features. IEEE Trans Geosci Remote Sens PP(99):1–13

    Google Scholar 

  • Kolzenburg S, Giordano D, Cimarelli C, Dingwell DB (2016b) In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement. Geochim Cosmochim Acta

  • Kouchi A, Tsuchiyama A, Sunagawa I (1986) Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contrib Mineral Petrol 93(4):429–438

    Article  Google Scholar 

  • Lange RA, Cashman KV, Navrotsky A (1994) Direct measurements of latent heat during crystallization and melting of a ugandite and an olivine basalt. Contrib Mineral Petrol 118(2):169–181

    Article  Google Scholar 

  • Lavallée Y, Kendrick J, Wall R, von Aulock F, Kennedy B, Sigmundsson F (2015) Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland. In: EGU General Assembly Conference Abstracts. p 11544

  • Lipman P, Banks N (1987) AA flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. Physics of Magmatic Processes 487

  • Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251(3):169–191

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158

    Article  Google Scholar 

  • Miyamoto H, Sasaki S (1997) Simulating lava flows by an improved cellular automata method. Comput Geosci 23(3):283–292

    Article  Google Scholar 

  • Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Guðnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res

  • Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56(5):343–360

    Article  Google Scholar 

  • Petrelli M, El Omari K, Le Guer Y, Perugini D (2016) Effects of chaotic advection on the timescales of cooling and crystallization of magma bodies at mid crustal levels. Geochem Geophys Geosyst

  • Pinkerton H (1987) Factors affecting the morphology of lava flows. Endeavour 11(2):73–79

    Article  Google Scholar 

  • Pinkerton H, Norton G (1995) Rheological properties of basaltic lavas at sub-liquidus temperatures: laboratory and field measurements on lavas from Mount Etna. J Volcanol Geotherm Res 68(4):307–323

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276(5686):383–385

    Article  Google Scholar 

  • Piombo A, Dragoni M (2009) Evaluation of flow rate for a one-dimensional lava flow with power-law rheology. Geophys Res Lett 36(22)

  • Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai ‘i. J Volcanol Geotherm Res 183(3):139–156

    Article  Google Scholar 

  • Sato H (2005) Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano. J Mineral Petrol Sci 100(4):133–142

    Article  Google Scholar 

  • Sehlke A, Whittington AG (2015) Rheology of lava flows on Mercury: an analog experimental study. J Geophys Res: Planets 120(11):1924–1955

    Article  Google Scholar 

  • Shao Z, Singer JP, Liu Y, Liu Z, Li H, Gopinadhan M, O’Hern CS, Schroers J, Osuji CO (2015) Shear-accelerated crystallization in a supercooled atomic liquid. Phys Rev E 91(2):020301

    Article  Google Scholar 

  • Shaw H, Wright T, Peck D, Okamura R (1968) The viscosity of basaltic magma; an analysis of field measurements in Makaopuhi lava lake, Hawaii. Am J Sci 266(4):225–264

    Article  Google Scholar 

  • Sigurdsson H (1999) Encyclopedia of volcanoes. Academic, San Diego

    Google Scholar 

  • Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (2015) The encyclopedia of volcanoes. Elsevier, Oxford

    Google Scholar 

  • Soldati A, Sehlke A, Chigna G, Whittington A (2016) Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 eruption of Pacaya (Guatemala). Bull Volcanol 78(6):1–19

    Article  Google Scholar 

  • Soule S, Cashman K, Kauahikaua J (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66(1):1–14

    Article  Google Scholar 

  • Sparks R, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4(5):269–271

    Article  Google Scholar 

  • Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156(1):245–257

    Article  Google Scholar 

  • Thordarson T (2015) Emplacement and growth of the August 2014 to February 2015 Nornahraun lava flow field North Iceland. In: 2015 AGU Fall Meeting. Agu

  • Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197–228

    Google Scholar 

  • Vona A, Romano C (2013) The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts. Contrib Mineral Petrol 166(2):491–509

    Article  Google Scholar 

  • Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75(11):3214–3236

    Article  Google Scholar 

  • Vona A, Romano C, Giordano D, Russell JK (2013) The multiphase rheology of magmas from Monte Nuovo (Campi Flegrei, Italy). Chem Geol 346:213–227

    Article  Google Scholar 

  • Walker D, Kirkpatrick R, Longhi J, Hays J (1976) Crystallization history of lunar picritic basalt sample 12002: phase-equilibria and cooling-rate studies. Geol Soc Am Bull 87(5):646–656

    Article  Google Scholar 

  • Witter JB, Harris AJ (2007) Field measurements of heat loss from skylights and lava tube systems. J Geophys Res: Solid Earth (1978–2012) 112(B1)

Download references

Acknowledgements

We thank the editors Katharine Cashman and James White as well as two anonymous reviewers for constructive comments that helped improve the manuscript. We would also like to thank the field team at the Institute of Earth Sciences at the University of Iceland for providing invaluable support during the field campaign. Special thanks go to Sveinbjorn Steinthorsson and William Moreland for technical and logistical assistance in the field as well as to Sara Barsotti at the Icelandic Met Office for an interesting discussion on the topic. We would further like to thank Corrado Cimarelli, Werner Ertl-Ingrisch and Kai Uwe Hess for support in the laboratory and interesting discussions during the experimental campaign. We thank Diego Coppola and Marco Laiolo for their help with interpreting MIROVA data to understand the lava flow field dynamics. Stephan Kolzenburg and Daniele Giordano acknowledge the financial support for this research from an infrastructure development grant awarded through the Fondazione CRT (Giordano 2014) and further funding by the Compagnia di San Paulo, an ERASMUS Traineeship and a University of Torino local research project (Giordano 2012), for providing funding for this research. The presented research was partially funded by an ERC Advanced Investigator Grant (EVOKES – No. 247076) held by Prof. Donald Bruce Dingwell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kolzenburg.

Additional information

Editorial responsibility: K.V. Cashman

Electronic supplementary material

ESM 1

(DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolzenburg, S., Giordano, D., Thordarson, T. et al. The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bull Volcanol 79, 45 (2017). https://doi.org/10.1007/s00445-017-1128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1128-6

Keywords

Navigation