Bulletin of Volcanology

, Volume 74, Issue 9, pp 2205–2218 | Cite as

Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation

  • Roberto Sulpizio
  • Arnau Folch
  • Antonio Costa
  • Chiara Scaini
  • Pierfrancesco Dellino
Research Article

Abstract

Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallajökull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38 %) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7 days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2 mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallajökull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.

Keywords

Volcanic ash Aviation safety Hazard maps Somma-Vesuvius FALL3D 

References

  1. Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150CrossRefGoogle Scholar
  2. Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base Plinian eruption of Somma Vesuvius. J Volcanol Geotherm Res 83:219–239CrossRefGoogle Scholar
  3. Blong RJ (1984) Volcanic hazards. A sourcebook on the effects of eruptions, AcademicGoogle Scholar
  4. Casadevall TJ (1993) Volcanic hazards and aviation safety, lessons of the past decade. FAA Aviat Saf J 2:1–11Google Scholar
  5. Casadevall TJ, Krohn D (1995) Effects of the 1992 Crater Peak eruptions on airports and aviation operations in the United States and Canada. USGS Bull 2139:205–220Google Scholar
  6. Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a Subplinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114CrossRefGoogle Scholar
  7. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi:10.1016/j.jvolgeores.2008.04.024 CrossRefGoogle Scholar
  8. Cornell W, Carey S, Sigurdsson H (1983) Computer simulation and transport of the Campanian Y-5 ash. J Volcanol Geotherm Res 17:89–109. doi:10.1016/0377-0273(83)90063-X CrossRefGoogle Scholar
  9. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647. doi:10.1016/j.epsl.2005.11.019 CrossRefGoogle Scholar
  10. Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273. doi:10.1007/s00445-008-0220-3 CrossRefGoogle Scholar
  11. Costa A, Folch A, Macedonio G (2010) A model for wet aggregation of ash particles in volcanic plumes and clouds: I. Theoretical formulation. J Geophys Res 115:B09201. doi:10.1029/2009JB007175 CrossRefGoogle Scholar
  12. Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012) Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behaviour. J Geophys Res 117: doi: 10.1029/2011JB008726.
  13. Di Vito MA, Sulpizio R, Zanchetta G, D’Orazio M (2008) The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J Volcanol Geotherm Res 177:19–48. doi:10.1016/j.jvolgeores.2007.11.019 CrossRefGoogle Scholar
  14. Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115. doi:10.1016/j.jvolgeores.2012.05.020 CrossRefGoogle Scholar
  15. Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean area. Bull Volcanol 72:1039–1059CrossRefGoogle Scholar
  16. Folch A, Jorba O, Viramonte J (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Nat Haz Earth Syst Sci 8:927–940CrossRefGoogle Scholar
  17. Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for volcanic ash transport and deposition. Comput Geosc 35:1334–1342. doi:10.1016/j.cageo.2008.08.008 CrossRefGoogle Scholar
  18. Ganser H (1993) A rational approach to drag prediction of spherical and non-spherical particles. Powder Technol 77:143–152CrossRefGoogle Scholar
  19. Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Haz 51:287–302CrossRefGoogle Scholar
  20. GVP (2011) Puyehue-Cordón Caulle Smithsonian/USGS Weekly Volcanic Activity Reports @ http://www.volcano.si.edu/world/volcano.cfm?vnum=1507-15=&volpage=weekly
  21. ICAO (2010) Volcanic Ash Contingency Plan—Eur and Nat Regions, EUR Doc 019–NAT Doc 006, Part II, International Civil Aviation AuthorityGoogle Scholar
  22. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  23. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 years as recorded in deep-sea sediments. Geol Soc Am Bull 89:591–604CrossRefGoogle Scholar
  24. Kerminen VM, Niemi JV, Timonen H, Aurela M, Frey A, Carbone S, Saarikoski S, Teinilä K, Hakkarainen J, Tamminen J, Vira J, Prank M, Sofiev M, Hillamo R (2011) Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011. Atmos Chem Phys 11:12227–12239. doi:10.5194/acp-11-12227-2011 CrossRefGoogle Scholar
  25. Krishnaiah CR, Rao C (eds) (1988) Handbook of statistics, 6, sampling. Elsevier Science, AmsterdamGoogle Scholar
  26. Langmann B, Folch A, Hensch M, Matthias V (2011) Volcanic ash over Europe during the eruption of Eyjafjallajökull on Iceland, April–May 2010. Atmos Environ. doi:10.1016/j.atmosenv.2011.03.054
  27. Le Pennec JL, Ruiz GA, Ramón P, Palacios E, Mothes P, Yepes H (2011) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217–218:91–103Google Scholar
  28. Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazard assessment. J Volcanol Geotherm Res 178:366–377. doi:10.1016/j.jvolgeores.2008.08.014 CrossRefGoogle Scholar
  29. Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184:462–472CrossRefGoogle Scholar
  30. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155 CrossRefGoogle Scholar
  31. Mele D, Sulpizio R, Dellino P, La Volpe L (2011) Stratigraphy and eruptive dynamics of a pulsating Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.). Bull Volcanol 73:257–278. doi:10.1007/s00445-010-0407-2 CrossRefGoogle Scholar
  32. Miller TP, Casadevall TJ (2000) Volcanic Ash Hazards to Aviation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 915–930Google Scholar
  33. Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T, Hincks TK, Macedonio G, Papale P, Rosi M, Santacroce R, Woo G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415. doi:10.1016/j.jvolgeores.2008.05.014 CrossRefGoogle Scholar
  34. Oxford-Economics (2010) The economic impacts of air travel restrictions due to volcanic ash report for airbus. Oxford Economics Report, Oxford, UK, p 12Google Scholar
  35. Papp KR, Dean KG, Dehn J (2005) Predicting regions susceptible to high concentrations of airborne volcanic ash in the North Pacific region. J Volcanol Geotherm Res 148:295–314CrossRefGoogle Scholar
  36. Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the south Italian volcanoes durig the past 80 000 years as determined by marine tephrochronology. J Volcanol Geoth Res 34:153–172CrossRefGoogle Scholar
  37. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294CrossRefGoogle Scholar
  38. Rose WI, Durant AJ (2011) Fate of volcanic ash: aggregation and fallout. Geology 39(9):895–896CrossRefGoogle Scholar
  39. Rosi M, Principe C, Vecci R (1993) The 1631 eruption of Vesuvius reconstructed from the review of chronicles and study of deposits. J Volcanol Geotherm Res 58:151–182CrossRefGoogle Scholar
  40. Ruiz AG, Barba DP, Yepes H, Hall ML (2004) Las nubes de ceniza del Volcán Tungurahua entre Octubre 1999 y Septiembre 2001. Invest Geoci 1:28–34Google Scholar
  41. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18. doi:10.1016/j.jvolgeores.2008.06.009 CrossRefGoogle Scholar
  42. Scandone R, Giacomelli L, Fattori Speranza F (2008) Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944. J Volcanol Geotherm Res 170:167–180CrossRefGoogle Scholar
  43. Schneider DJ, Rose WI, Kelley L (1995) Tracking of 1992 eruption clouds from Crater Peak vent of Mount Spurr Volcano, Alaska, using AVHRR. USGS Bull 2139:27–36Google Scholar
  44. Schumann U, Weinzierl B, Reitebuch O, Schlager H, Minikin A, Forster C, Baumann R, Sailer T, Graf K, Mannstein H, Voigt C, Rahm S, Simmet R, Scheibe M, Lichtenstern M, Stock P, Rüba H, Schäuble D, Tafferner A, Rautenhaus M, Gerz T, Ziereis H, Krautstrunk M, Mallaun C, Gayet JF, Lieke K, Kandler K, Ebert M, Weinbruch S, Stohl A, Gasteiger J, Olafsson H, Sturm K (2010) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys Discuss 10:22131–22218. doi:10.5194/acpd-10-22131-2010 CrossRefGoogle Scholar
  45. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R, Roberts MJ, Óskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430. doi:10.1038/nature09558 CrossRefGoogle Scholar
  46. Sigurdsson H, Carey S, Cornell W, Pescatore T (1985) The eruption of Vesuvius in AD 79. Natl Geogr Res 1:332–387Google Scholar
  47. Simpson JJ, Berg JS, Hufford GL, Bauer C, Pieri D, Servranckx R (2002) The February 2001 Eruption of Mount Cleveland, Alaska: case study of an aviation hazard. Wea Forecasting 17:691–704CrossRefGoogle Scholar
  48. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, SubPlinian-type eruption from low-viscosity, phonolitic to tephriphonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767CrossRefGoogle Scholar
  49. Sulpizio R, Caron B, Giaccio B, Paterne M, Siani G, Zanchetta G, Santacroce R (2008) The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the Central Mediterranean area. IOP Conf Series 3, doi: 10.1088/1755-1307/3/1/012031
  50. Sulpizio R, van Welden A, Caron B, Zanchetta G (2010a) The Holocene tephrostratigraphic record of Lake Shkodra (Albania and Montenegro). J Quat Sc 25:633–650. doi:10.1002/jqs.1334 CrossRefGoogle Scholar
  51. Sulpizio R, Zanchetta G, D’Orazio M, Vogel H, Wagner B (2010b) Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences 7:3273–3288. doi:10.5194/bgd-7-1-2010 CrossRefGoogle Scholar
  52. Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2010c) The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol 72:539–558. doi:10.1007/s00445-009-0339-x CrossRefGoogle Scholar
  53. Sulpizio R, Bonasia R, Dellino P, Mele D, Di Vito MA, La Volpe L (2010d) The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP) part II: sedimentology and physical volcanology of pyroclastic density current deposits. Bull Volcanol 72:559–577. doi:10.1007/s00445-009-0340-4 CrossRefGoogle Scholar
  54. Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Volcanism: physics and tectonics. Arc, Tokyo, pp 95–113Google Scholar
  55. Watt SFL, Pyle DM, Mather TA, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaiten, Chile. J Geophys Res 114:B04207. doi:10.1029/2008JB006219 CrossRefGoogle Scholar
  56. Wilson L, Walker GPL (1987) Explosive volcanic eruptions VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astr Soc 89:657–679CrossRefGoogle Scholar
  57. Witham CS, Oppenheimer C (2004) Mortality in England during the 1783–4 Laki Craters eruption. Bull Volcanol 67:15–26CrossRefGoogle Scholar
  58. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Internat 122:7–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Roberto Sulpizio
    • 1
    • 2
  • Arnau Folch
    • 3
  • Antonio Costa
    • 4
    • 5
  • Chiara Scaini
    • 3
  • Pierfrancesco Dellino
    • 1
  1. 1.Dipartimento di Scienze della Terra e GeoambientaliBariItaly
  2. 2.IDPA-CNRMilanItaly
  3. 3.Barcelona Supercomputing Center—Centro Nacional de Supercomputación (BSC-CNS)BarcelonaSpain
  4. 4.Environmental Systems Science CentreUniversity of ReadingReadingUK
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaNaplesItaly

Personalised recommendations