Skip to main content
Log in

Structure and CO2 budget of Merapi volcano during inter-eruptive periods

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Soil temperature and gas (CO2 concentration and flux) have been investigated at Merapi volcano (Indonesia) during two inter-eruptive periods (2002 and 2007). Precise imaging of the summit crater and the spatial pattern of diffuse degassing along a gas traverse on the southern slope are interpreted in terms of summit structure and major caldera organization. The summit area is characterized by decreasing CO2 concentrations with distance from the 1932 crater rim, down to atmospheric levels at the base of the terminal cone. Similar patterns are measured on any transect down the slopes of the cone. The spatial distribution of soil gas anomalies suggests that soil degassing is controlled by structures identified as concentric historical caldera rims (1932, 1872, and 1768), which have undergone severe hydrothermal self-sealing processes that dramatically lower the permeability and porosity of soils. Temperature and CO2 flux measurements in soils near the dome display heterogeneous distributions which are consistent with a fracture network identified by previous geophysical studies. These data support the idea that the summit is made of isolated and mobile blocks, whose boundaries are either sealed by depositional processes or used as pathways for significant soil degassing. Within this context, self-sealing both prevents long-distance soil degassing and controls heat and volatile transfers near the dome. A rough estimate of the CO2 output through soils near the dome is 200–230 t day−1, i.e. 50% of the estimated total gas output from the volcano summit during these quiescent periods. On Merapi’s southern slope, a 2,500 m long CO2 traverse shows low-amplitude anomalies that fit well with a recently observed electromagnetic anomaly, consistent with a faulted structure related to an ancient avalanche caldera rim. Sub-surface soil permeability is the key parameter that controls the transfer of heat and volatiles within the volcano, allowing its major tectonic architecture to be revealed by soil gas and soil temperature surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allard P, Carbonnelle J, Dajlevic D, Le Bronec J, Morel P, Robe M-C, Maurenas J-M, Faivre-Pierret R, Martin D, Sabroux J-C, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391

    Article  Google Scholar 

  • Allard P, Carbonelle J, Dajlevic D, Metrich N, Sabroux J-C (1995) The volatile source and magma degassing budget of Merapi volcano: evidence from high-temperature gas emissions and crystal melt inclusions. In Merapi Int. Decade Volcano Workshop, UNESCO/Volcanological Survey of Indonesia, Yogyakarta, 16–17

  • Allard P, Hammouya G, Parello F (1998) Dégazage magmatique diffus à la Soufrière de Guadeloupe, Antilles. C R Acad Sci 327:315–318

    Google Scholar 

  • Aubert M, Dana IN, Gourgaud A (2000) Internal structure of the Merapi summit from self-potential measurements. J Volcanol Geotherm Res 100:337–343

    Article  Google Scholar 

  • Bahar I (1984) Contribution à la connaissance du volcanisme indonésien: le Merapi (Centre Java), cadre structural, pétrologie, géochimie et implications volcanologiques. PhD thesis, University of Montpellier

  • Baubron J-C (1996) Etna Laboratory Volcano. Contrat EV5V-CT92–0177. Prospection, caractérisation et variabilité temporelle d’émanations gazeuses diffuses à l’Etna (Sicile-Italie). Années 1993 et 1994. Open file report, BRGM/RP-38820-FR (www.brgm.fr)

  • Baubron J-C, Allard P, Toutain J-P (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano island (Italy). Nature 344:51–54

    Article  Google Scholar 

  • Baubron J-C, Allard P, Sabroux J-C, Tedesco D, Toutain J-P (1991) Soil gas emanations as precursory indicators of volcanic eruptions. J Geol Society London 148:571–576

    Article  Google Scholar 

  • Baubron J-C, Rigo A, Toutain J-P (2002) Soil gas profiles as a tool to characterize active tectonic areas: the Jaut pass example (Pyrénées, France). Earth Planet Sci Lett 196:69–81

    Article  Google Scholar 

  • Baubron J-C, Hamm V, Pinault J-L (2004) Elaboration de la méthodologie de mesurage et d’interprétation de la concentration en radon dans les habitations situées dans l’emprise de travaux miniers souterrains. Open file report, BRGM/RP-53886-FR (www.brgm.fr)

  • Baxter P, Baubron J-C, Coutinho R (1999) Health hazards and disaster potential of ground gas emissions at Furnas volcano, Sao Miguel, Azores. J Volcanol Geoth Res 92:95–106

    Article  Google Scholar 

  • Beauducel F, Agung Nandaka M, Cornet F-H, Diament M (2006) Mechanical discontinuities monitoring at Merapi volcano using kinematic GPS. J Volcanol Geoth Res 150:300–312

    Google Scholar 

  • Berthommier P (1990) Etude volcanologique du Merapi (Centre Java). Téphrostratigraphie et chronologie. Mécanismes éruptifs. PhD thesis, University Blaise Pascal, Clermont-Ferrand

  • Camus G, Gourgaud A, Mossand-Berthommier P-C, Vincent P-M (2000) Merapi (Central Java, Indonesia): An outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geoth Res 100:139–163

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochem 13:543–552

    Article  Google Scholar 

  • Chiodini G, Cardellini C, Frondini F, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J Geophys Res 106:16213–16221

    Article  Google Scholar 

  • Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110:B08204, doi:10.1029/2004JB003542

    Article  Google Scholar 

  • Commer M, Helwig SL, Hordt A, Scholl C, Tezkan B (2006) New results on the resistivity structure of Merapi Volcano (Indonesia), derived from three-dimensional restricted inversion of long-offset transient electromagnetic data. Geophys J Int 167:1172–1187

    Article  Google Scholar 

  • D'Alessandro W, Parello F (1997) Soil gas prospection of He, 222Rn and CO2: Vulcano Porto area, Aeolian Islands, Italy. Applied Geochem 12:213–224

    Article  Google Scholar 

  • Farrar CD, Sorrey ML, Evans WC, Howles JF, Kerr BD, Kennedy BM, King CY, Southon JR (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675–678

    Article  Google Scholar 

  • Friedel S, Byrdina S, Jacobs F, Zimmer M (2004) Self-potential and ground temperature at Merapi volcano prior to its crisis in the rainy season of 2000–2001. J Volcanol Geotherm Res 134:149–168

    Article  Google Scholar 

  • Giammanco S, Inguaggiato S, Valenza M (1998) Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. J Volcanol Geotherm Res 81:297–310

    Article  Google Scholar 

  • Giggenbach WF (1992) Magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geol 87:1927–1944

    Google Scholar 

  • Gunawan H (2005) Gravimétrie et microgravimétrie appliquées à la volcanologie: exemples de la Soufrière de Guadeloupe et du Mérapi. PhD thesis, Institut de Physique du Globe de Paris

  • Hernandez PA, Salazar JM, Shimoike Y, Mori T, Notsu K, Perez N (2001) Diffuse emission of CO2 from Miyakejima volcano, Japan. Chem Geol 177:175–185

    Article  Google Scholar 

  • Kalscheuer KM, Commer SL, Helwig A, Hördt A, Tezkan B (2007) Electromagnetic evidence for an ancient avalanche caldera rim on the south flank of Mount Merapi, Indonesia. J Volcanol Geoth Res 162:81–97

    Article  Google Scholar 

  • Klusman RW (1993) Soil gas and related methods for natural resource exploration. Wiley, Chichester

    Google Scholar 

  • Le Cloarec M-F, Gauthier P-J (2003) Merapi Volcano, Central Java, Indonesia: A case study of radionuclide behavior in volcanic gases and its implications for magma dynamics at andesitic volcanoes. J Geophys Res 108(B5), doi:10.1029/2001JB001709

  • Lewicki JL, Connor C, St-Amand K, Stix J, Spinner W (2003) Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua. Geophys Res Lett 30(15):1817, doi:10.1029/2003GL017731

    Article  Google Scholar 

  • Müller A, Haak V (2004) 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volcanol Geotherm Res 138:205–222

    Article  Google Scholar 

  • Nho EY, Le Cloarec M-F, Ardouin B, Tjetjep WS (1996) Source strength assessment of volcanic trace elements emitted from the Indonesian arc. J Volcanol Geotherm Res 74:121–129

    Article  Google Scholar 

  • Pinault J-L, Baubron J-C (1996) Signal processing of soil gas radon, atmospheric pressure, and soil temperature data: a new approach for radon concentration modeling. J Geophys Res 101:3157–3171

    Article  Google Scholar 

  • Ratdomopurbo A (1995) Etude sismologique du volcan Merapi et formation du dôme de 1994. PhD Thesis, University Joseph Fourier, Grenoble

  • Richter G, Wassermann J, Zimmer M, Ohrnberger M (2004) Correlation of seismic activity and fumarole temperature at the Mt. Merapi volcano (Indonesia) in 2000. J Volcanol Geotherm Res 135:331–342

    Article  Google Scholar 

  • Salazar JML, Hernández PA, Pérez NM, Melián G, Alvarez J, Segura F, Notsu K (2001) Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys Res Lett 28(22):4275–4278, doi:10.1029/2001GL013709

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Sortino F, Nonell A, Toutain J-P, Munoz M, Valladon M, Volpicelli G (2006) A new method for sampling fumarolic gases: Analysis of major, minor and metallic trace elements with ammonia solutions. J Volcanol Geot Res 158:244–256

    Article  Google Scholar 

  • Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochim Cosmochim Acta 51:2083–2101

    Article  Google Scholar 

  • Toutain J-P, Baubron J-C (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27

    Article  Google Scholar 

  • Toutain J-P, Baubron J-C, Francois L (2002) Runoff control of soil degassing at an active volcano. The case of Piton de la Fournaise, Reunion Island. Earth Planet Sci Lett 197:83–94

    Article  Google Scholar 

  • Van Bemmelen RW (1949) The Geology of Indonesia, 1A. Martinus Nijhoff, The Hague

    Google Scholar 

  • Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  • Welles JM, Demetriades-Shah TH, McDermitt DK (2001) Considerations for measuring ground CO2 effluxes with chambers. Chem Geol 177:3–13

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood Lollar B, Garzón V, Barquero J, Fernandez E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142

    Article  Google Scholar 

  • Young KD, Voight B, Subandriyo, Sajiman, Miswanto, Casadevall TJ (2005) Ground deformation at Merapi Volcano, Java, Indonesia: distance changes, June 1988–October 1995. J Volcanol Geotherm Res 141:157–175

    Article  Google Scholar 

  • Zimmer M, Erzinger J (2003) Continuous H2O, CO2, 222Rn and temperature measurements on Merapi Volcano, Indonesia. J Volcanol Geotherm Res 125:25–38

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the French Embassy in Jakarta (Indonesia) under the general Franco-Indonesian bilateral cooperation in volcanology. We thank the DVGHM (Directorate of Volcanology and Geological Hazard Mitigation, Bandung, Indonesia) for supporting the cooperation. The manuscript was greatly improved by constructive comments from S. Giammanco. A detailed and critical review by Deborah Bergfeld, whose advice is warmly acknowledged, allowed for a better display of data and its interpretation. Dave G. Jones (BGS, UK) and Pierre Delmelle (editor in charge) strongly improved the English and the organization of the paper. This is IPGP contribution no. 2385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Toutain.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toutain, JP., Sortino, F., Baubron, JC. et al. Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71, 815–826 (2009). https://doi.org/10.1007/s00445-009-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-009-0266-x

Keywords

Navigation