Host infection and community composition predict vector burden

Abstract

Lyme disease is the most prevalent vector-borne disease in the United States, yet critical gaps remain in our understanding of tick and host interactions that shape disease dynamics. Rodents such as deer mice (Peromyscus spp.) and dusky-footed woodrats (Neotoma fuscipes) are key reservoirs for Borrelia burgdorferi, the etiological bacterium of Lyme disease, and can vary greatly in abundance between habitats. The aggregation of Ixodes pacificus, the western black-legged tick, on rodent hosts is often assumed to be constant across various habitats and not dependent on the rodent or predator communities; however, this is rarely tested. The factors that determine tick burdens on key reservoir hosts are important in estimating Lyme disease risk because larger tick burdens can amplify pathogen transmission. This study is the first to empirically measure I. pacificus larval burdens on competent reservoir hosts as a function of community factors such as rodent diversity, predator diversity, and questing tick abundance. Rodents were live trapped at oak woodland sites to collect tick burdens and tissue samples to test for infection with Borrelia burgdorferi sensu lato. We found that N. fuscipes tick burdens were negatively correlated with predator diversity, but positively correlated with questing I. pacificus larvae. In addition, rodent hosts that were infected with B. burgdorferi sensu lato tend to have higher burdens of larval ticks. These results demonstrate that tick burdens can be shaped by variability between individuals, species, and the broader host community with consequences for transmission and prevalence of tick-borne pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ali S, Gugliemini O, Harber S et al (2017) Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLoS Negl Trop Dis 11:1–16. https://doi.org/10.1371/journal.pntd.0005135

    Article  Google Scholar 

  2. Allan BF, Keesing F, Ostfeld RS (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17:267–272. https://doi.org/10.1046/j.1523-1739.2003.01260.x

    Article  Google Scholar 

  3. Baillargeon S, Rivest L-P (2007) The Rcapture package: loglinear models for capture-recapture in R. J Stat Softw 19:1–31. https://doi.org/10.18637/jss.v019.i05

  4. Banks PB (1998) Responses of Australian bush rats, Rattus fuscipes, to the odor of introduced Vulpes vulpes. J Mammal 79:1260–1264. https://doi.org/10.2307/1383017

    Article  Google Scholar 

  5. Banks P, Nelika K, Hughes A, Rose T (2003) Do native Australian small mammals avoid faeces of domestic dogs? Responses of Rattus fuscipes and Antechinus stuartii. Aust Zool 32:406–409. https://doi.org/10.7882/AZ.2002.018

    Article  Google Scholar 

  6. Barbour AG, Anderson JR, Lane RS et al (1985) The western black-legged tick, Ixodes pacificus: a vector of Borrelia burgdorferi. Am J Trop Med Hyg 34:925–930. https://doi.org/10.4269/ajtmh.1985.34.925

    Article  PubMed  Google Scholar 

  7. Bardi M, Franssen CL, Hampton JE et al (2011) Paternal experience and stress responses in California mice (Peromyscus californicus). Comp Med 61:20–30

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67. https://doi.org/10.18637/jss.v067.i01

  9. Brisson D, Dykhuizen DE (2006) A modest model explains the distribution and abundance of Borrelia burgdorferi strains. Am J Trop Med Hyg 74:615–622

    Article  Google Scholar 

  10. Brown RN, Lane RS (1994) Natural and experimental Borrelia burgdorferi infections in woodrats and deer mice from California. J Wildl Dis 30:389–398. https://doi.org/10.7589/0090-3558-30.3.389

    CAS  Article  PubMed  Google Scholar 

  11. Brown R, Lane R (1996) Reservoir competence of four chaparral-dwelling rodents for Borrelia burgdorferi in California. Am J Trop Med Hyg 54(1):84–91. https://doi.org/10.4269/ajtmh.1996.54.84

    CAS  Article  PubMed  Google Scholar 

  12. Brown JS, Laundre JW, Gurung M (1999) The ecology of fear: optimal foraging, game theory, and trophic interactions. J Mammal 80:385–399. https://doi.org/10.2307/1383287

    Article  Google Scholar 

  13. Brown RN, Peot MA, Lane RS (2006) Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission. J Med Entomol 43:743–751. https://doi.org/10.1093/jmedent/43.4.743

    CAS  Article  PubMed  Google Scholar 

  14. Brunner JL, Ostfeld RS (2008) Multiple causes of variable tick burden on small-mammal hosts. Ecology 89:2259–2272. https://doi.org/10.1890/07-0665.1

    Article  PubMed  Google Scholar 

  15. Buskirk JV, Ostfeld RS (2015) Controlling Lyme disease by modifying the density and species composition of tick hosts. Ecol Appl 5:1133–1140. https://doi.org/10.2307/2269360

    Article  Google Scholar 

  16. Calabrese JM, Brunner JL, Ostfeld RS (2011) Partitioning the aggregation of parasites on hosts into intrinsic and extrinsic components via an extended poisson-gamma mixture model. PLoS ONE 6:e29215. https://doi.org/10.1371/journal.pone.0029215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Castro M, Wright S (2007) Vertebrate hosts of Ixodes pacificus (Acari: Ixodidae) in California. J Vector Ecol 32:140–149

    Article  Google Scholar 

  18. Clark K, Karsch-Mizrachi I, Lipman DJ et al (2016) GenBank. Nucleic Acids Res 44:67–72. https://doi.org/10.1093/nar/gkv1276

    CAS  Article  Google Scholar 

  19. Coon CAC, Mahoney PJ, Edelblutte E et al (2020) Predictors of puma occupancy indicate prey vulnerability is more important than prey availability in a highly fragmented landscape. Wildlife Biol. https://doi.org/10.2981/wlb.00540

  20. Cranford JA (1977) Home range and habitat utilization by Neotoma fuscipes as determined by radio telemetry. J Mammal 58(2):165–172. https://doi.org/10.2307/1379573

    Article  Google Scholar 

  21. Culver M (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197. https://doi.org/10.1093/jhered/91.3.186

    CAS  Article  PubMed  Google Scholar 

  22. da Xavier SCC, Roque ALR, dos Lima VS et al (2012) Lower richness of small wild mammal species and Chagas disease risk. PLoS Negl Trop Dis 6. https://doi.org/10.1371/journal.pntd.0001647

  23. Davidar P, Wilson M, Ribeiro JMC (1989) Differential distribution of immature Ixodes dammini (Acari: Ixodidae) on rodent hosts. J Parasitol 75(6):898. https://doi.org/10.2307/3282868

    CAS  Article  PubMed  Google Scholar 

  24. Devevey G, Brisson D (2012) The effect of spatial heterogenity on the aggregation of ticks on white-footed mice. Parasitology 139:915–925. https://doi.org/10.1017/S003118201200008X

    CAS  Article  PubMed  Google Scholar 

  25. Dickman CR, Doncaster CP (2009) Responses of small mammals to Red fox (Vulpes vulpes) odour. J Zool 204:521–531. https://doi.org/10.1111/j.1469-7998.1984.tb02384.x

    Article  Google Scholar 

  26. Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s Test. Stata J Promot Commun Stat Stata 15:292–300. https://doi.org/10.1177/1536867X1501500117

    Article  Google Scholar 

  27. Dizney LJ, Ruedas LA (2009) Increased host species diversity and decreased prevalence of Sin Nombre virus. Emerg Infect Dis 15:1012–1018. https://doi.org/10.3201/eid1507.081083

    Article  PubMed  PubMed Central  Google Scholar 

  28. Egoscue HJ (1962) The bushey-tailed wood rat: a laboratory colony. J Mammal 43(3):328–337. https://doi.org/10.2307/1376939

    Article  Google Scholar 

  29. Eisenberg JF (1962) Studies on the behavior of Peromyscus maniculatus gambelii and Peromyscus californicus parasiticus. Behaviour 19(3):177–207. https://doi.org/10.1163/156853962X00014

    Article  Google Scholar 

  30. Eisen L, Eisen RJ, Lane RS (2004) The roles of birds, lizards, and rodents as hosts for the western black-legged tick Ixodes pacificus. J Vector Ecol 29:295–308

    PubMed  Google Scholar 

  31. Eisen L, Eisen RJ, Lane RS (2006) Geographical distribution patterns and habitat suitability models for presence of host-seeking Ixodid ticks in dense woodlands of Mendocino county, California. J Med Entomol 43:415–427. https://doi.org/10.1093/jmedent/43.2.415

    CAS  Article  PubMed  Google Scholar 

  32. Eisen R, Eisen L, Graham C et al (2018) Surveillance for Ixodes pacificus and pathogens found in this tick species in the United States. Center for Disease Control. https://www.cdc.gov/ticks/resources/TickSurveillance_Ipacificus-P.pdf

  33. Embar K, Raveh A, Burns D, Kotler BP (2014) To dare or not to dare? Risk management by owls in a predator–prey foraging game. Oecologia 175:825–834. https://doi.org/10.1007/s00442-014-2956-0

    Article  PubMed  Google Scholar 

  34. Ernest HB, Boyce WM, Bleich VC et al (2003) Genetic structure of mountain lion (Puma concolor) populations in California. Conserv Genet 4:353–366

    CAS  Article  Google Scholar 

  35. Ferrero DM, Lemon JK, Fluegge D et al (2011) Detection and avoidance of a carnivore odor by prey. PNAS 1–6. https://doi.org/10.1073/pnas.1103317108

  36. Fox J, Weisburg S (2011) CRAN—package car. In: An R companion to appl. regression, 2nd edn. Sage. https://cran.r-project.org/web/packages/car/index.html. Accessed 26 Apr 2020

  37. Furman DP, Loomis EC (1984) The ticks of California (Acari: Ixodida). Bull Calif Insect Surv 25:1–239

    Google Scholar 

  38. Gibb R, Redding DW, Chin KQ et al (2020) Zoonotic host diversity increases in human-dominated ecosystems. Nature 584:398–402. https://doi.org/10.1038/s41586-020-2562-8

    CAS  Article  PubMed  Google Scholar 

  39. Gottdenker NL, Calzada JE, Salaña A, Carroll RC (2011) Association of anthropogenic land use change and increased abundance of the Chagas disease vector Rhodnius pallescens in a rurual landscape of Panama. Am J Trop Med Hygeine 84:70–77. https://doi.org/10.4269/ajtmh.2011.10-0041

    Article  Google Scholar 

  40. Hammond TT, Hendrickson CI, Maxwell TL et al (2019) Host biology and environmental variables differentially predict flea abundances for two rodent hosts in a plague-relevant system. Int J Parasitol Parasites Wildl 9:174–183. https://doi.org/10.1016/j.ijppaw.2019.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harrell FE (2020) Harrell miscellaneous package “Hmisc.” https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf

  42. Harrison A, Scantlebury M, Montgomery WI (2010) Body mass and sex-biased parasitism in wood mice Apodemus sylvaticus. Oikos 119:1099–1104. https://doi.org/10.1111/j.1600-0706.2009.18072.x

    Article  Google Scholar 

  43. Hofmeester TR, Jansen PA, Wijnen HJ et al (2017) Cascading effects of predator activity on tick-borne disease risk. Proc R Soc B Biol Sci 284:20170453. https://doi.org/10.1098/rspb.2017.0453

    Article  Google Scholar 

  44. Jones KEE, Patel NGG, Levy MAA et al (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498. https://doi.org/10.1111/j.1461-0248.2006.00885.x

    CAS  Article  PubMed  Google Scholar 

  46. Keesing F, Belden LK, Daszak P et al (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652. https://doi.org/10.1038/nature09575

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kinsey KP (1976) Social behavior in confined populations of the allegheny wood rat, Neotoma floridans magister. Anim Behav 24:181–187

    Article  Google Scholar 

  48. Kleinjan JE, Lane RS (2008) Larval keys to the genera of Ixodidae (Acari) and species of Ixodes (Latreille) ticks established in California. Pan-Pac Entomol 84:121–142. https://doi.org/10.3956/2007-38.1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kuo MM, Lane RS, Giclas PC (2000) A comparative study of mammalian and reptilian aternative pathway of complement-mediated killing of the Lyme disease spirochete (Borrelia burgdorferi). J Parasitol 86:1223. https://doi.org/10.2307/3285004

    CAS  Article  PubMed  Google Scholar 

  50. Lambin EF, Tran A, Vanwambeke SO et al (2010) Pathogenic landscapes: Interactions between land, people, disease vectors and their animal hosts. Int J Health Geogr 9:1–13. https://doi.org/10.1186/1476-072X-9-54

    Article  Google Scholar 

  51. Lane RS, Brown RN (1991) Wood rats and kangaroo rats: potential reservoirs of the Lyme disease spirochete in California. J Med Entomol 28:299–302. https://doi.org/10.1093/jmedent/28.3.299

    CAS  Article  PubMed  Google Scholar 

  52. Lane RS, Burgdorfer W (1986) Potential role of native and exotic deer and their associated ticks (Acari: Ixodidae) in the ecology of lyme disease in California, USA. Zentralbl Bakteriol Mikrobiol Hyg A 263:55–64. https://doi.org/10.1016/S0176-6724(86)80103-1

    CAS  Article  PubMed  Google Scholar 

  53. Lane RS, Stubbs HA (1990) Host-seeking behavior of adult Ixodes pacificus (Acari: Ixodidae) as determined by flagging vegetation. J Med Entomol 27:282–287. https://doi.org/10.1093/jmedent/27.3.282

    CAS  Article  PubMed  Google Scholar 

  54. Lane RS, Steinlein DB, Mun J (2004) Human behaviors elevating exposure to Ixodes pacificus (Acari: Ixodidae) nymphs and their associated bacterial zoonotic agents in a hardwood forest. J Med Entomol 41:239–248. https://doi.org/10.1603/0022-2585-41.2.239

    Article  PubMed  Google Scholar 

  55. Lawrence A, O’Connor K, Haroutounian V, Swei A (2018) Patterns of diversity along a habitat size gradient in a biodiversity hotspot. Ecosphere 9:e02183. https://doi.org/10.1002/ecs2.2183

    Article  Google Scholar 

  56. Levi T, Wilmers CC (2012) Wolves–coyotes–foxes: a cascade among carnivores. Ecology 93:921–929. https://doi.org/10.1890/11-0165.1

    Article  PubMed  Google Scholar 

  57. Levi T, Kilpatrick AM, Mangel M, Wilmers CC (2012) Deer, predators, and the emergence of Lyme disease. PNAS 109:10942–10947. https://doi.org/10.1073/pnas.1204536109

    Article  PubMed  Google Scholar 

  58. Levi T, Keesing F, Oggenfuss K, Ostfeld RS (2015) Accelerated phenology of blacklegged ticks under climate warming. Philos Trans R Soc B Biol Sci 370:1–8. https://doi.org/10.1098/rstb.2013.0556

    Article  Google Scholar 

  59. Levin ML, Fish D (1998) Density-dependent factors regulating feeding success of Ixodes scapularis larvae (Acari: Ixodidae). J Parasitol 84:36. https://doi.org/10.2307/3284526

    CAS  Article  PubMed  Google Scholar 

  60. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F (2003) The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. PNAS 100:567–571

    CAS  Article  Google Scholar 

  61. MacDonald AJ (2018) Abiotic and habitat drivers of tick vector abundance, diversity, phenology and human encounter risk in southern California. PLoS ONE 13:1–23. https://doi.org/10.1371/journal.pone.0201665

    CAS  Article  Google Scholar 

  62. MacDonald AJ, Hyon DW, McDaniels A et al (2018) Risk of vector tick exposure initially increases, then declines through time in response to wildfire in California. Ecosphere 9:e02227. https://doi.org/10.1002/ecs2.2227

    Article  Google Scholar 

  63. Mannelli A, Kitron U, Jones CJ, Slajchert TL (1993) Role of the Eastern Chipmunk as a host for immature Ixodes dammini (Acari: Ixodidae) in Northwestern illinois. J Med Entomol 30(1):87–93. https://doi.org/10.1093/jmedent/30.1.87

    CAS  Article  PubMed  Google Scholar 

  64. Mihalca AD, Dumitrache MO, Sándor AD et al (2012) Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution. Parasit Vectors 5:1–7. https://doi.org/10.1186/1756-3305-5-266

    Article  Google Scholar 

  65. Moll RJ, Redilla KM, Mudumba T et al (2017) The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J Anim Ecol 86:749–765. https://doi.org/10.1111/1365-2656.12680

    Article  PubMed  Google Scholar 

  66. Moll RJ, Eaton JT, Cepek JD et al (2020) Dynamic rodent behavioral response to predation risk: implications for disease ecology. Oecologia 192:67–78. https://doi.org/10.1007/s00442-019-04565-z

    Article  PubMed  Google Scholar 

  67. Moore SM, Borer ET, Hosseini PR (2010) Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models. J R Soc Interface 7:161–176. https://doi.org/10.1098/rsif.2009.0131

    Article  PubMed  Google Scholar 

  68. Mowry S, Keesing F, Fischhoff IR, Ostfeld RS (2019) Predicting larval tick burden on white-footed mice with an artificial neural network. Ecol Inform 52:150–158. https://doi.org/10.1016/j.ecoinf.2019.04.002

    Article  Google Scholar 

  69. Mysterud A, Byrkjeland R, Qviller L, Viljugrein H (2015) The generalist tick Ixodes ricinus and the specialist tick Ixodes trianguliceps on shrews and rodents in a northern forest ecosystem-a role of body size even among small hosts. Parasit Vectors 8:1–10. https://doi.org/10.1186/s13071-015-1258-7

    CAS  Article  Google Scholar 

  70. Nickel BA, Suraci JP, Allen ML, Wilmers CC (2019) Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol Conserv 241:1–11. https://doi.org/10.1016/j.biocon.2019.108383

    Article  Google Scholar 

  71. Ogrzewalska M, Uezu A, Jenkins CN, Labruna MB (2011) Effect of forest fragmentation on tick infestations of birds and tick infection rates by Rickettsia in the Atlantic Forest of Brazil. EcoHealth 8:320–331. https://doi.org/10.1007/s10393-011-0726-6

    Article  PubMed  Google Scholar 

  72. Orrock JL, Danielson BJ, Brinkerhoff RJ (2004) Rodent foraging is affected by indirect, but not by direct, cues of predation risk. Behav Ecol 15:433–437. https://doi.org/10.1093/beheco/arh031

    Article  Google Scholar 

  73. Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front Ecol Environ 2:13–20. https://doi.org/10.1890/1540-9295(2004)002[0013:APGFYH]2.0.CO;2

    Article  Google Scholar 

  74. Ostfeld RS, Miller MC, Hazler KR (1996) Causes and consequences of tick (Ixodes scapularis) burdens on white-footed mice (Peromyscus leucopus). J Mammal 77:266–273. https://doi.org/10.2307/1382727

    Article  Google Scholar 

  75. Ostfeld RS, Canham CD, Oggenfuss K et al (2006) Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol 4:e145. https://doi.org/10.1371/journal.pbio.0040145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Ostfeld RS, Levi T, Keesing F et al (2018) Tick-borne disease risk in a forest food web. Ecology 99:1562–1573. https://doi.org/10.1002/ecy.2386

    Article  PubMed  Google Scholar 

  77. Padgett KA, Lane RS (2001) Life cycle of Ixodes pacificus (Acari: Ixodidae): timing of developmental processes under field and laboratory conditions. J Med Entomol 38:684–693. https://doi.org/10.1603/0022-2585-38.5.684

    CAS  Article  PubMed  Google Scholar 

  78. Patz JA, Olson SH, Uejio CK, Gibbs HK (2008) Disease emergence from global climate and land use change. Med Clin North Am 92(6):1473–1491

    Article  Google Scholar 

  79. Perez G, Bastian S, Agoulon A et al (2016) Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasit Vectors 9:1–18. https://doi.org/10.1186/s13071-016-1296-9

    CAS  Article  Google Scholar 

  80. Postic D, Assous MV, Grimont PAD, Baranton G (1994) Diversity of Borrelia burgdorfeii sensu lato evidenced by restriction fragment length polymorphism of rrf (5S)-rrl (23S) intergenic spacer amplicons. Int J Syst Bacteriol 44:743–752. https://doi.org/10.1099/00207713-44-4-743

    CAS  Article  PubMed  Google Scholar 

  81. Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134:763–776. https://doi.org/10.1017/S0031182006002150

    CAS  Article  PubMed  Google Scholar 

  82. Rosenberg R, Lindsey NP, Fischer M et al (2018) Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep 67:496–501. https://doi.org/10.15585/mmwr.mm6717e1

  83. Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH (2011) Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis 2:123–128. https://doi.org/10.1016/j.ttbdis.2011.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  84. Salkeld DJ, Lane RS (2010) Community ecology and disease risk: lizards, squirrels, and the Lyme disease spirochete in California, USA. Ecology 91:293–298. https://doi.org/10.1890/08-2106.1

    Article  PubMed  Google Scholar 

  85. Salomon J, Hamer SA, Swei A (2020) A beginner’s guide to collecting questing hard ticks (Acari: Ixodidae): a standardized tick dragging protocol. J Insect Sci 10:1–8. https://doi.org/10.1093/jisesa/ieaa073

    Article  Google Scholar 

  86. Shaw MT, Keesing F, McGrail R, Ostfeld RS (2003) Factors influencing the distribution of larval blacklegged ticks on rodent hosts. Am J Trop Med Hyg 68:447–452. https://doi.org/10.4269/ajtmh.2003.68.447

    Article  PubMed  Google Scholar 

  87. Slowik TJ, Lane RS (2009) Feeding preferences of the immature stages of three western North American Ixodid ticks (Acari) for avian, reptilian, or rodent hosts. J Med Entomol. https://doi.org/10.1603/033.046.0115

    Article  PubMed  Google Scholar 

  88. Suraci JP, Clinchy M, Zanette LY, Wilmers CC (2019a) Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol Lett. https://doi.org/10.1111/ele.13344

    Article  PubMed  Google Scholar 

  89. Suraci JP, Smith JA, Clinchy M et al (2019b) Humans, but not their dogs, displace pumas from their kills: an experimental approach. Sci Rep 9:12214. https://doi.org/10.1038/s41598-019-48742-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Sutherst RW (2004) Global change and human vulnerability to vector-borne Diseases. Clin Microbiol Rev 17:136–173. https://doi.org/10.1128/CMR.17.1.136-173.2004

    Article  PubMed  PubMed Central  Google Scholar 

  91. Swei A, Ostfeld RS, Lane RS, Briggs CJ (2011) Impact of the experimental removal of lizards on Lyme disease risk. Proc R Soc B Biol Sci 278:2970–2978. https://doi.org/10.1098/rspb.2010.2402

    Article  Google Scholar 

  92. Swei A, Briggs CJ, Lane RS, Ostfeld RS (2012) Impacts of an introduced forest pathogen on the risk of Lyme disease in California. Vector Borne Zoonotic Dis 12:623. https://doi.org/10.1089/vbz.2011.0783

    Article  PubMed  PubMed Central  Google Scholar 

  93. Swei A, Couper LI, Coffey LL et al (2020) Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne Zoonotic Dis 20:159–170. https://doi.org/10.1089/vbz.2018.2432

    Article  PubMed  Google Scholar 

  94. Talleklint-Eisen L, Lane RS (1999) Variation in the density of questing Ixodes pacificus (Acari: Ixodidae) nymphs infected with Borrelia burgdorferi at different spatial scales in California. J Parasitol 85:824. https://doi.org/10.2307/3285817

    CAS  Article  PubMed  Google Scholar 

  95. Tälleklint-Eisen L, Lane RS (2000) Efficiency of drag sampling for estimating population sizes of Ixodes pacificus (Acari: Ixodidae) nymphs in leaf litter. J Med Entomol 37:484–487. https://doi.org/10.1093/jmedent/37.3.484

    Article  PubMed  Google Scholar 

  96. Tesky JL (1995) Puma concolor. Fire effects information system. United States Department of Agriculture, Forest Service, Rocky Mountain Reserch Station, Fire Sciences Laboratory. https://www.fs.fed.us/database/feis/animals/mammal/puco/all.html

  97. Villepique JT, Pierce BM, Bleich VC, Bowyer RT (2011) Diet of cougars (puma concolor) following a decline in a population of mule deer (odocoileus hemionus): lack of evidence for switching prey. Southwest Nat 56:187–192. https://doi.org/10.1894/F07-TAL.1

    Article  Google Scholar 

  98. Wallen K (1982) Social organization in the dusky-footed woodrat (Neotoma fuscipes): a field and laboratory study. Anim Behav 30(4):1171–1182. https://doi.org/10.1016/S0003-3472(82)80208-X

    Article  Google Scholar 

  99. Whitford WG, Steinberger Y (2010) Pack rats (Neotoma spp.): Keystone ecological engineers? J Arid Enviro 74:1450–1455. https://doi.org/10.1016/j.jaridenv.2010.05.025

    Article  Google Scholar 

  100. Wimberly MC, Lamsal A, Giacomo P, Chuang T-W (2014) Regional variation of climatic influences on West Nile virus outbreaks in the United States. Am J Trop Med Hyg 91:677–684. https://doi.org/10.4269/ajtmh.14-0239

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wolff JO (1996) Coexistence of white-footed mice and deer mice may be mediated by fluctuating environmental conditions. Oecologia 108:529–533. https://doi.org/10.1007/BF00333730

    Article  PubMed  Google Scholar 

  102. Wolff JO, Cicirello DM (1991) Comparative paternal and infanticidal behavior of sympatric white-footed mice (Peromyscus leucopus noveboracensis) and deermice (P. maniculatus nubiterrae). Behav Ecol 2:38–45

    Article  Google Scholar 

  103. Young HS, Dirzo R, McCauley DJ et al (2015) Drivers of intensity and prevalence of flea parasitism on small mammals in east African savanna ecosystems. J Parasitol 101:327. https://doi.org/10.1645/14-684.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Jessica Kwan, Johnathan Bertram, Kerry O’Connor, Tiffany Hong, Shivang Mehta, Lilianna Cerna, Phil Galicinao, Sukhman Sidhu, Rachel Grigich, Parker Kaye, Eric Seredian, Thor Olsen, Laura Hughes, Adrienne Almarinez, Adrian Barrera-Velasquez, and Grace Shaw for their help processing and collecting samples. We would like to thank Edward Connor for his statistical analysis advice. We would like to acknowledge that this research was conducted on Native lands of: Ramaytush, Ohlone, Chochenya and Wappo. We thank the City of Belmont, California State Parks, East Bay Municipal Water District, Marin Open Space Trust, San Mateo County Parks, Sonoma Regional Parks, Midpeninsula Regional Open Space and the Town of Los Gatos for access to conduct research in their parks.

Funding

This research was funded by grants from CSUPERB, the Bay Area Lyme Disease Foundation, and NSF grants #1427772, 1745411, and 1750037 to AS, Sigma-Xi to AL and NIH MARC: T34-GM008574, NIH MBRS-RISE: R25-GM059298 to JS. Additionally, this research was funded by the support of the Pacific Southwest Regional Center of Excellence for Vector-Borne Diseases funded by the U.S. Centers for Disease Control and Prevention (Cooperative Agreement 1U01CK000516) to SS and AS.

Author information

Affiliations

Authors

Contributions

AL, SS, AC and JS collaboratively conducted field work and processed the samples, JS and AS analyzed data and wrote the manuscript; all authors provided edits of the manuscript.

Corresponding author

Correspondence to Jordan Salomon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study involving animals were in accordance with the ethical standards of the California Department of Fish and Wildlife and the San Francisco State Animal Care and Use Committee (IACUC AU15-06).

Additional information

This experimental field study documents a positive relationship between larval tick burdens and host-pathogen infection, while predator diversity reduces tick burdens on important reservoir hosts.

Communicated by Roland A. Brandl.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salomon, J., Lawrence, A., Crews, A. et al. Host infection and community composition predict vector burden. Oecologia (2021). https://doi.org/10.1007/s00442-021-04851-9

Download citation

Keywords

  • Zoonotic disease
  • Biodiversity
  • Ixodes pacificus
  • Borrelia burgdorferi
  • Predators