Predation patterns across states of landscape fragmentation can shift with seasonal transitions

Abstract

Nested scales of habitat heterogeneity may independently or synergistically influence faunal interactions. Fragmentation effects (i.e., the breaking apart of landscapes) and edge effects (i.e., ecological differences between edges and interiors of patches, nested within landscapes) are distinct yet related ecological concepts, linked mathematically by the habitat edge-to-area ratio. Our study quantified the separate and interactive effects of fragmentation and edge on predation using temperate seagrass. To assess how predation and generalized consumption were influenced by fragmentation state (i.e., continuous, fragmented), and proximity to edge (i.e., edges, interiors), we used tethering assays with two prey-items: juvenile crabs, Callinectes sapidus, and “squidpops” (dried squid mantle). We also investigated whether faunal densities (a proxy for consumption potential) and temperature (a proxy for a broad suite of seasonal changes) correlated with predation across landscapes. Results showed fragmentation state affected predation (i.e., crab) mortality, yet edge effects did not. Moreover, the directionality of fragmentation effects shifted across a temperature/seasonal gradient. Predation mortality more than doubled in continuous landscapes amidst temperature increases, surpassing initially higher mortality in fragmented landscapes, which did not systematically vary with temperature. This mortality magnitude “flip” matched spatiotemporal trends in faunal densities between continuous and fragmented meadows. Consumption rates of both prey-items increased alongside temperature and neither demonstrated edge effects. However, crabs showed fragmentation effects not seen with squidpops, suggesting differing foraging strategies used by consumers of these prey-items. We conclude that fragmentation and edge effects have dynamic influences on temperate predator–prey interactions, as faunal favorability of habitat heterogeneity can “flip” temporally.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baillie CJ, Fear JM, Fodrie FJ (2015) Ecotone effects on seagrass and saltmarsh habitat use by juvenile nekton in a temperate estuary. Estuar Coasts 38:1414–1430. https://doi.org/10.1007/s12237-014-9898-y

    CAS  Article  Google Scholar 

  2. Banikas EM, Thompson JS (2012) Predation risk experienced by mummichog, Fundulus heteroclitus, in intertidal and subtidal salt marsh habitats. Estuar Coasts 35:1346–1352. https://doi.org/10.1007/s12237-012-9517-8

    CAS  Article  Google Scholar 

  3. Becker A, Coppinger C, Whitfield AK (2012) Influence of tides on assemblages and behaviour of fishes associated with shallow seagrass edges and bare sand. Mar Ecol Prog Ser 456:187–199. https://doi.org/10.3354/meps09695

    Article  Google Scholar 

  4. Bell JD, Westoby M (1986) Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia 68:205–209. https://doi.org/10.1016/S0367-2530(17)30741-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bell SS, Brooks RA, Robbins BD, Fonseca MS, Hall MO (2001) Faunal response to fragmentation in seagrass habitats: implications for seagrass conservation. Biol Conserv 100:115–123. https://doi.org/10.1016/S0006-3207(00)00212-3

    Article  Google Scholar 

  6. Blanchard GF, Guarini JM, Gros P, Richard P (1997) Seasonal effect on the relationship between the photosynthetic capacity of intertidal microphytobenthos and temperature. J Phycol 33:723–728. https://doi.org/10.1111/j.0022-3646.1997.00723.x

    Article  Google Scholar 

  7. Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Est Coast Shelf Sci 68:383–403. https://doi.org/10.1016/j.ecss.2006.01.026

    Article  Google Scholar 

  8. Boström C, Pittman SJ, Simenstad C, Kneib RT (2011) Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar Ecol Prog Ser. https://doi.org/10.3354/meps09051

    Article  Google Scholar 

  9. Cote D, Gregory RS, Morris CJ, Newton BH, Schneider DC (2013) Elevated habitat quality reduces variance in fish community composition. J Exp Mar Biol Ecol. https://doi.org/10.1016/j.jembe.2012.11.006

    Article  Google Scholar 

  10. Duffy JE, Ziegler SL, Campbell JE, Bippus PM, Lefcheck JS (2015) Squidpops: a simple tool to crowdsource a global map of marine predation intensity. PLoS ONE 10:e0142994. https://doi.org/10.1371/journal.pone.0142994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fahrig L (1998) When does fragmentation of breeding habitat affect population survival? Ecol Model 105:273–292. https://doi.org/10.1016/S0304-3800(97)00163-4

    Article  Google Scholar 

  12. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  13. Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663. https://doi.org/10.1111/jbi.12130

    Article  Google Scholar 

  14. Feierabend D, Kielland K (2015) Seasonal effects of habitat on sources and rates of snowshoe hare predation in Alaskan boreal forests. PLoS ONE 10:e0143543

    Article  PubMed Central  Google Scholar 

  15. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Thousand Oaks: Sage. https://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  16. Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song D, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. https://doi.org/10.1126/sciadv.1500052

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hovel KA, Fonseca MS (2005) Influence of seagrass landscape structure on the juvenile blue crab habitat-survival function. Mar Ecol Prog Ser 300:179–191. https://doi.org/10.3354/meps300179

    Article  Google Scholar 

  18. Hovel KA, Lipcius RN (2001) Habitat fragmentation in a seagrass landscape: patch size and complexity control blue crab survival. Ecology 82:1814–1829. https://doi.org/10.1890/0012-9658(2001)082[1814:HFIASL]2.0.CO;2

    Article  Google Scholar 

  19. Hovel KA, Lipcius RN (2002) Effects of seagrass habitat fragmentation on juvenile blue crab survival and abundance. J Exp Mar Biol Ecol 271:75–98. https://doi.org/10.1016/S0022-0981(02)00043-6

    Article  Google Scholar 

  20. Howell DC (1998) Statistical methods in human sciences. Wadsworth, New York

    Google Scholar 

  21. Iriarte A, Aravena G, Villate F, Uriarte I, Ibenaz B, Llope M, Stenseth NC (2010) Dissolved oxygen in contrasting estuaries of the Bay of Biscay: effects of temperature, river discharge and chlorophyll a. Mar Ecol Prog Ser 418:57–71. https://doi.org/10.3354/meps08812

    CAS  Article  Google Scholar 

  22. Jankowska E, Włodarska-Kowalczuk M, Kotwicki L, Balazy P, Kuliński K (2014) Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows. Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2014.01.003

    Article  Google Scholar 

  23. Laurance WF (2008) Theory meets reality: How habitat fragmentation research has transcended island biogeography theory. Biol Conserv 141:1731–1744. https://doi.org/10.1016/j.biocon.2008.05.011

    Article  Google Scholar 

  24. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  25. Mahoney RD, Kenworthy MD, Geyer JK, Hovel KA, Fodrie FJ (2018) Distribution and relative predation risk of nekton reveal complex edge effects within temperate seagrass habitat. J Exp Mar Biol Ecol. https://doi.org/10.1016/j.jembe.2018.02.004

    Article  Google Scholar 

  26. McCann MJ, Able KW, Christian RR, Fodrie FJ, Jensen OP, Johnson JJ, López-Duarte PC, Martin CW, Olin JA, Polito MJ, Roberts BJ (2017) Key taxa in food web responses to stressors: the Deepwater Horizon oil spill. Front Ecol Environ. https://doi.org/10.1002/fee.1474

    Article  Google Scholar 

  27. Meise CJ, Stehlik LL (2003) Habitat use, temporal abundance variability, and diet of blue crabs from a New Jersey estuarine system. Estuaries 26:731–745. https://doi.org/10.1007/BF02711984

    Article  Google Scholar 

  28. Moksnes PO, Lipcius RN, Pihl L, Van Montfrans J (1997) Cannibal-prey dynamics in young juveniles and postlarvae of the blue crab. J Exp Mar Biol Ecol 215:157–187. https://doi.org/10.1016/S0022-0981(97)00052-X

    Article  Google Scholar 

  29. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62. https://doi.org/10.1016/S0169-5347(00)88977-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Peterson CH, Black R (1994) An experimentalists challenge—when artifacts of intervention interact with treatments. Mar Ecol Prog Ser 111:289–297

    Article  Google Scholar 

  31. Peterson BJ, Thompson KR, Cowan JH, Heck KL (2001) Comparison of predation pressure in temperate and subtropical seagrass habitats based on chronographic tethering. Mar Ecol Prog Ser 224:77–85. https://doi.org/10.3354/meps224077

    Article  Google Scholar 

  32. Pickett STA, Thompson JN (1978) Patch dynamics and the design of nature reserves. Biol Conserv 13:27–37

    Article  Google Scholar 

  33. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  34. Reynolds PL, Stachowicz JJ, Hovel K, Boström C, Boyer K, Cusson M, Eklöf JS, Engel FG, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu CM, Hori M, Hanley TC, Ivanov M, Jorgensen P, Kruschel C, Lee K, McGlathery K, Moksnes P, Nakaoka M, O'Connor MI, O'Connor NE, Orth RJ, Rossi F, Ruesink J, Sotka EE, Thormar J, Tomas F, Unsworth RKF, Whalen MA, Duffy JE (2018) Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 99:29–35. https://doi.org/10.1002/ecy.2064

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rielly-Carroll E, Freestone AL (2017) Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system. Oecologia 183:899–908. https://doi.org/10.1007/s00442-016-3791-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ries L, Fletcher RJ, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Annu Rev Ecol Evol Syst 35:491–522

    Article  Google Scholar 

  37. Rodemann JR, Brandl SJ (2017) Consumption pressure in coastal marine environments decreases with latitude and in artificial vs. natural habitats. Mar Ecol Prog Ser 574:167–179. https://doi.org/10.3354/meps12170

    Article  Google Scholar 

  38. Rypel AL, Layman CA, Arrington DA (2007) Water depth modifies relative predation risk for a motile fish taxon in Bahamian tidal creeks. Estuar Coasts 30:518–525. https://doi.org/10.1007/BF03036517

    Article  Google Scholar 

  39. Salini JP, Brewer DT, Blaber SJM (1998) Dietary studies on the predatory fishes of the Norman River estuary, with particular reference to penaeid prawns. Estuar Coast Shelf Sci 6:837–847. https://doi.org/10.1006/ecss.1997.0319

    Article  Google Scholar 

  40. Santos RVS, Ramos S, Bonecker ACT (2017) Environmental control on larval stages of fish subject to specific salinity range in tropical estuaries. Reg Stud Mar Sci 13:42–53. https://doi.org/10.1016/j.rsma.2017.03.010

    Article  Google Scholar 

  41. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675 (PMID 22930834)

    CAS  Article  PubMed Central  Google Scholar 

  42. Virnstein R, Curran M (1986) Colonization of artificial seagrass versus time and distance from source. Mar Ecol Prog Ser 29:279–288. https://doi.org/10.3354/meps029279

    Article  Google Scholar 

  43. Warry FY, Hindell JS, MacReadie PI, Jenkins GP, Connolly RM (2009) Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass. Oecologia 159:883–892

    CAS  Article  PubMed Central  Google Scholar 

  44. Weissburg MJ, Zimmer-Faust RK (1993) Life and death in moving fluids: hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443. https://doi.org/10.2307/1940072

    Article  Google Scholar 

  45. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  46. Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soulé ME (ed) Conservation biology. Sinauer, Sunderland, pp 237–256

    Google Scholar 

  47. Wilson KA, Able KW, Heck KL (1990) Habitat use by juvenile blue crabs: a comparison among habitats in southern New Jersey. Bull Mar Sci 46:105–114

    Google Scholar 

  48. Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280:2126–2128. https://doi.org/10.1126/science.280.5372.2126

    CAS  Article  Google Scholar 

  49. Yeager LA, Keller DA, Burns TR, Pool AS, Fodrie FJ (2016) Threshold effects of habitat fragmentation per se on fish diversity at landscapes scales. Ecology 97:2157–2166. https://doi.org/10.1002/ecy.1449

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cori Lopazanski, Francesca Peay, and Owen Mulvey-McFerron for field help, Stephen Fegley and James Morley for statistical analysis help, and Chris Sauder for aerial photography. We also thank two anonymous reviewers whose comments we feel greatly improved our manuscript.

Funding

This study was funded by the National Science Foundation (OCE-1635950).

Author information

Affiliations

Authors

Contributions

AHY and FJF conceived and designed experiments and wrote the manuscript. AHY performed the experiments and analyzed the data.

Corresponding author

Correspondence to Amy H. Yarnall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable institutional and/or national guidelines for care and use of animals were followed.

Additional information

Communicated by Pablo Munguia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 308 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yarnall, A.H., Fodrie, F.J. Predation patterns across states of landscape fragmentation can shift with seasonal transitions. Oecologia 193, 403–413 (2020). https://doi.org/10.1007/s00442-020-04675-z

Download citation

Keywords

  • Predation
  • Edge effects
  • Seasonality
  • Callinectes sapidus
  • Squidpops