Skip to main content

Advertisement

Log in

Wide outcrossing provides functional connectivity for new and old Banksia populations within a fragmented landscape

  • Conservation ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Habitat fragmentation affects landscape connectivity, the extent of which is influenced by the movement capacity of the vectors of seed and pollen dispersal for plants. Negative impacts of reduced connectivity can include reduced fecundity, increased inbreeding, genetic erosion and decreased long-term viability. These are issues for not only old (remnant) populations, but also new (restored) populations. We assessed reproductive and connective functionality within and among remnant and restored populations of a common tree, Banksia menziesii R.Br. (Proteaceae), in a fragmented urban landscape, utilising a genetic and graph theoretical approach. Adult trees and seed cohorts from five remnants and two restored populations were genotyped using microsatellite markers. Genetic variation and pollen dispersal were assessed using direct (paternity assignment) and indirect (pollination graphs and mating system characterisation) methods. Restored populations had greater allelic diversity (Ar = 8.08; 8.34) than remnant populations (Ar range = 6.49–7.41). Genetic differentiation was greater between restored and adjacent remnants (FST = 0.03 and 0.10) than all other pairwise comparisons of remnant populations (mean FST = 0.01 ± 0.01; n = 16 P = 0.001). All populations displayed low correlated paternity (rp = 0.06–0.16) with wide-ranging realised pollen dispersal distances (< 1.7 km) and well-connected pollen networks. Here, we demonstrate reproductive and connective functionality of old and new populations of B. menziesii within a fragmented landscape. Due to long-distance pollination events, the physical size of these sites underestimates their effective population size. Thus, they are functionally equivalent to large populations, integrated into a larger landscape matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

Thanks to Janet Anthony for assistance with the genetic work undertaken in the laboratory and Carole Elliott and Bryn Funnekotter for providing comments and helpful suggestions for improving the paper. This work was supported by Rocla Quarry Products (now Hanson Construction Materials), a Holsworth Wildlife Research Endowment and a Friends of Kings Park writing scholarship to ALR, the Botanic Gardens and Parks Authority and a linkage grant to SLK from the Australian Research Council (LP100100620). ALR was supported by an Australian Postgraduate Award during this study.

Author information

Authors and Affiliations

Authors

Contributions

ALR, PGN, EAS and SLK conceived and designed the research. ALR performed the study and analysed the data. Popgraph analysis was performed by ALR and RJD. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Alison L. Ritchie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Amy Parachnowitsch.

This study is one of the first to examine plant functional connectivity, measuring effective pollen dispersal using new methods in landscape genetics. We found that new populations have integrated with old through long-distance pollination events. Retaining remnant populations in the urban matrix is vital for maintaining reproductive functionality at the landscape scale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritchie, A.L., Dyer, R.J., Nevill, P.G. et al. Wide outcrossing provides functional connectivity for new and old Banksia populations within a fragmented landscape. Oecologia 190, 255–268 (2019). https://doi.org/10.1007/s00442-019-04387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-019-04387-z

Keywords

Navigation