, Volume 187, Issue 3, pp 719–730 | Cite as

Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity

  • Nelson J. Aranguren-Riaño
  • Cástor Guisande
  • Jonathan B. Shurin
  • Natalie T. Jones
  • Aldo Barreiro
  • Santiago R. Duque
Community ecology – original research


Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.


Niche breadth Crustaceans Plankton Productivity Tropical lakes 



NA was supported by a graduate fellowship from Colciencias 1892–2006. JS was supported by a Fulbright Colombia Fellowship, JS and NTJ were supported by NSF DEB 1457737.

Author contribution statement

NJA, CG, AB and SD collected field samples and analyzed amino acids in the laboratory, NJA, JBS and NTJ analyzed the data, and all authors wrote and edited the manuscript.

Supplementary material

442_2018_4130_MOESM1_ESM.pdf (332 kb)
Supplementary material 1 (PDF 332 kb)


  1. Aranguren-Riaño N, Guisande C, Ospina R (2011) Factors controlling crustacean zooplankton species richness in Neotropical lakes. J Plankton Res 33:1295–1303CrossRefGoogle Scholar
  2. Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88:1675–1686CrossRefPubMedGoogle Scholar
  3. Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813CrossRefGoogle Scholar
  4. Boechat IG, Adrian R (2005) Biochemical composition of algivorous freshwater ciliates: you are not what you eat. FEMS Microbiol Ecol 53:393–400CrossRefPubMedGoogle Scholar
  5. Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233–241CrossRefGoogle Scholar
  6. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  7. Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R (2009) Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity–diversity relationships. Ecol Lett 12:475–487CrossRefPubMedGoogle Scholar
  8. Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  9. Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310CrossRefPubMedGoogle Scholar
  10. Cyr H, Curtis JM (1999) Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118:306–315CrossRefPubMedGoogle Scholar
  11. Dalsgaard J, St John M, Kattner G, Muller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46(46):225–340CrossRefPubMedGoogle Scholar
  12. DeMott WR (1986) The role of taste in food selection by fresh-water zooplankton. Oecologia 69:334–340CrossRefPubMedGoogle Scholar
  13. Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between primary productivity and species richness. Ecology 81:2662–2679CrossRefGoogle Scholar
  14. Donato JC (2001) Fitoplancton de los lagos andinos del norte de Sudamerica (Colombia): composicion y factores de distribucion. Academia Colombiana de Ciencias Exactas, Fisicas y Naturales Bogota, ColombiaGoogle Scholar
  15. Forsberg BR, Araujolima C, Martinelli LA, Victoria RL, Bonassi JA (1993) Autotrophic carbon-sources for fish of the central Amazon. Ecology 74:643–652CrossRefGoogle Scholar
  16. Gliwicz ZM (1990) Food thresholds and body size in cladocerans. Nature 343:638–640CrossRefGoogle Scholar
  17. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910CrossRefGoogle Scholar
  18. Guisande C (2006) Biochemical fingerprints in zooplankton. Limnetica 25:369–376Google Scholar
  19. Guisande C, Maneiro I, Riveiro I (1999) Homeostasis in the essential amino acid composition of the marine copepod Euterpina acutifrons. Limnol Oceanogr 44:691–696CrossRefGoogle Scholar
  20. Guisande C, Maneiro I, Riveiro I, Barreiro A, Pazos Y (2002) Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar Ecol Prog Ser 239:147–156CrossRefGoogle Scholar
  21. Guisande C, Bartumeus F, Ventura M, Catalan J (2003) Role of food partitioning in structuring the zooplankton community in mountain lakes. Oecologia 136:627–634CrossRefPubMedGoogle Scholar
  22. Guisande C, Barreiro A, Vaamonde A (2011) Tratamiento de datos con R. Statistica y SPSS, Ediciones Díaz de Santos, MadridGoogle Scholar
  23. Hebert MP, Beisner BE, Maranger R (2016) A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology 97:1069–1080CrossRefPubMedGoogle Scholar
  24. Hebert MP, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39:3–12CrossRefGoogle Scholar
  25. Hernández J, Hurtado A, Ortiz R, Walschburger T (1992) Unidades biogeográficas de Colombia. In: Halffter G (ed) La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Mexico, pp 105–151Google Scholar
  26. Kerfoot WC, Kirk KL (1991) Degree of taste discrimination among suspension-feeding cladocerans and copepods—implications for detritivory and herbivory. Limnol Oceanogr 36:1107–1123CrossRefGoogle Scholar
  27. Kling GW, Fry B, Obrien WJ (1992) Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73:561–566CrossRefGoogle Scholar
  28. Koroleff F (1969) Direct determination of ammonia in natural waters as Indophenol Blue. In: ICES, information on techniques and methods for seawater analysis, an interlaboratory report, pp 19–22Google Scholar
  29. Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305CrossRefPubMedGoogle Scholar
  30. Laliberte E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology, R package version 1.2Google Scholar
  31. Leibold MA (1995) The niche concept revisited—mechanistic models and community context. Ecology 76:1371–1382CrossRefGoogle Scholar
  32. Litchman E, Ohman MD, Kiorboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484CrossRefGoogle Scholar
  33. Matthews B, Mazumder A (2006) Habitat specialization and the exploitation of allochthonous carbon by zooplankton. Ecology 87:2800–2812CrossRefPubMedGoogle Scholar
  34. Naeem S (2002) Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology 83:2925–2935CrossRefGoogle Scholar
  35. Nevalainen L, Luoto TP (2017) Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Funct Ecol 31:488–498CrossRefGoogle Scholar
  36. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefPubMedGoogle Scholar
  37. Petry P, Bayley PB, Markle DF (2003) Relationships between fish assemblages, macrophytes and environmental gradients in the Amazon River floodplain. J Fish Biol 63:547–579CrossRefGoogle Scholar
  38. Shurin JB, Winder M, Adrian R, Keller W, Matthews B, Paterson AM, Paterson MJ, Pinel-Alloul B, Rusak JA, Yan ND (2010) Environmental stability and lake zooplankton diversity—contrasting effects of chemical and thermal variability. Ecol Lett 13:453–463CrossRefPubMedGoogle Scholar
  39. Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls on freshwater and marine phytoplankton. Oecologia 147:183–194CrossRefPubMedGoogle Scholar
  40. Sommer U, Sommer F, Santer B, Jamieson C, Boersma M, Becker C, Hansen T (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:545–550CrossRefGoogle Scholar
  41. Thouret J (1981) Una mapa geomorfoestructural de los Andes colombianos. Instituto Geografico “Agustin Codazzi” Bogota, ColombiaGoogle Scholar
  42. vanWandelen C, Cohen SA (1997) Using quaternary high-performance liquid chromatography eluent systems for separating 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate-derivatized amino acid mixtures. J Chromatogr A 763:11–22CrossRefGoogle Scholar
  43. Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301CrossRefPubMedGoogle Scholar
  44. Vogt RJ, Peres-Neto PR, Beisner BE (2013) Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122:1700–1709CrossRefGoogle Scholar
  45. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unidad de Ecología en Sistemas Acuáticos UDESAUniversidad Pedagógica y Tecnológica de ColombiaTunjaColombia
  2. 2.Departamento de Ecología y Biología AnimalUniversidad de VigoVigoSpain
  3. 3.Section of Ecology, Behavior and EvolutionUniversity of California San DiegoLa JollaUSA
  4. 4.Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR)MatosinhosPortugal
  5. 5.Grupo de Limnología AmazónicaUniversidad Nacional de Colombia, Sede AmazoniaLeticiaColombia

Personalised recommendations