Skip to main content

Temperature effects on a marine herbivore depend strongly on diet across multiple generations

Abstract

Increasing sea surface temperatures are predicted to alter marine plant–herbivore interactions and, thus, the structure and function of algal and seagrass communities. Given the fundamental role of host plant quality in determining herbivore fitness, predicting the effects of increased temperatures requires an understanding of how temperature may interact with diet quality. We used an herbivorous marine amphipod, Sunamphitoe parmerong, to test how temperature and diet interact to alter herbivore growth, feeding rates, survival, and fecundity in short- and long-term assays. In short-term thermal stress assays, S. parmerong was tolerant to the range of temperatures that it currently experiences in nature (20–26 °C), with mortality at temperatures > 27 °C. In longer term experiments, two generations of S. parmerong were reared in nine combinations of temperature (ambient, + 2, + 4 °C) and diet (two high- and one low-quality algal species) treatments. Temperature and diet interacted to determine total numbers of amphipods in the F1 generation and the potential F2 population size (sum of brooded eggs and newly hatched juveniles). The size and development rate of F1 individuals were affected by diet, but not temperature. Consumption rates per capita were highest at intermediate temperatures but could not explain the observed differences in survival. Our results show that predicting the effects of increasing temperature on marine herbivores will be complicated by variation in host plant quality, and that climate-driven changes to plant availability will affect herbivore performance, and thus the strength of plant–herbivore interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alsterberg C, Eklöf JS, Gamfeldt L, Havenhand JN, Sundbäck K (2013) Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proc Natl Acad Sci USA 110(21):8603–8608. https://doi.org/10.1073/pnas.1303797110

    Article  PubMed  PubMed Central  Google Scholar 

  2. Atkins RL, Griffin JN, Angelini C, O’Connor MI, Silliman BR (2015) Consumer-plant interaction strength: importance of body size, density and metabolic biomass. Oikos 124:1274–1281. https://doi.org/10.1111/oik.01966

    Article  Google Scholar 

  3. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  4. Boersma M, Mathew KA, Niehoff B, Schoo KL, Franco-Santos RM, Meunier CL (2016) Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it’s hot? Ecol Lett 19:45–53. https://doi.org/10.1111/ele.12541

    Article  PubMed  Google Scholar 

  5. Burnaford JL (2004) habitat modification and refuge from sublethal stress drive a marine plant–herbivore association. Ecology 85:2837–2849

    Article  Google Scholar 

  6. Burnell OW, Russell BD, Irving AD, Connell SD (2013) Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar Ecol Prog Ser 485:37–46. https://doi.org/10.3354/meps10323

    Article  CAS  Google Scholar 

  7. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655. https://doi.org/10.1126/science.1210288

    Article  PubMed  CAS  Google Scholar 

  8. Cardoso PG, Grilo TF, Dionísio G, Aurélio M, Lopes AR, Pereira R, Pacheco M, Rosa R (2017) Short-term effects of increased temperature and lowered pH on a temperate grazer-seaweed interaction. Estuar Coast Shelf Sci 197:35–44. https://doi.org/10.1016/j.ecss.2017.08.007

    Article  CAS  Google Scholar 

  9. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. https://doi.org/10.1016/j.tree.2007.04.003

    Article  PubMed  Google Scholar 

  10. Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2009.2069

    Article  Google Scholar 

  11. Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D (2015) Interactions between temperature and nutrients across levels of ecological organization. Glob Change Biol 21:1025–1040. https://doi.org/10.1111/gcb.12809

    Article  Google Scholar 

  12. Cruz-Rivera E, Hay ME (2001) Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Mar Ecol Prog Ser 218:249–266

    Article  Google Scholar 

  13. Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS (1998) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612

    Article  Google Scholar 

  14. Diamond SE, Kingsolver JG (2010) Fitness consequences of host plant choice: a field experiment. Oikos 119:542–550. https://doi.org/10.1111/j.1600-0706.2009.17242.x

    Article  Google Scholar 

  15. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37. https://doi.org/10.1146/annurev-marine-041911-111611

    Article  PubMed  Google Scholar 

  16. Eisenlord ME, Groner ML, Yoshioka RM, Elliott J, Maynard J, Fradkin S, Turner M, Pyne K, Rivlin N, Van Hooidonk R, Harvell CD (2016) Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Phil Trans R Soc B 371:20150212. https://doi.org/10.1098/rstb.2015.0212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Faulkner KT, Clusella-Trullas S, Peck LS, Chown SL (2014) Lack of coherence in the warming responses of marine crustaceans. Funct Ecol 28:895–903. https://doi.org/10.1111/1365-2435.12219

    Article  Google Scholar 

  18. Fox LA, Morrow PA (1981) Specialization: species property or local phenomenon. Science 211:887–893

    Article  PubMed  CAS  Google Scholar 

  19. Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Fabricius KE, Hall-Spencer JM, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Scheriber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15. https://doi.org/10.1890/14-0802.1v

    Article  PubMed  Google Scholar 

  20. Goldenberg SU, Nagelkerken I, Ferreira CM, Ullah H, Connell SD (2017) Boosted food web productivity through ocean acidification collapses under warming. Glob Change Biol 23:4177–4184. https://doi.org/10.1890/14-0802.1

    Article  Google Scholar 

  21. Gutow L, Petersen I, Bartl K, Huenerlage K (2016) Marine meso-herbivore consumption scales faster with temperature than seaweed primary production. J Exp Mar Biol Ecol 477:80–85. https://doi.org/10.1016/j.jembe.2016.01.009

    Article  Google Scholar 

  22. Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. https://doi.org/10.1111/j.1600-0706.2010.19469.x

    Article  Google Scholar 

  23. Hardy NA, Lamare M, Uthicke S, Wolfe K, Doo S, Dworjanyn S, Byrne M (2014) Thermal tolerance of early development in tropical and temperate sea urchins: inferences for the tropicalization of eastern Australia. Mar Biol 161:395–409. https://doi.org/10.1007/s00227-013-2344-z

    Article  CAS  Google Scholar 

  24. Heldt KA, Connell SD, Anderson K, Russell BD, Munguia P (2016) Future climate stimulates population out-breaks by relaxing constraints on reproduction. Sci Rep 6:33383. https://doi.org/10.1038/srep33383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201. https://doi.org/10.1146/annurev.physiol.67.040403.105027

    Article  PubMed  CAS  Google Scholar 

  26. Hobday AJ, Lough JM (2011) Projected climate change in Australian marine and freshwater environments. Mar Freshw Res 62:1000–1014. https://doi.org/10.1071/MF10302

    Article  Google Scholar 

  27. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. https://doi.org/10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  28. King AD, Karoly DJ, Henley BJ (2017) Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat Clim Change 7:412–416. https://doi.org/10.1038/nclimate3296

    Article  Google Scholar 

  29. Kingsolver JG, Huey RB (2008) Size, temperature, and fitness: three rules. Evol Ecol Res 10:251–268

    Google Scholar 

  30. Kordas RL, Harley CDG, Connor MIO (2011) Community ecology in a warming world: the influence of temperature on interspecific interactions in marine systems. J Exp Mar Bio Ecol 400:218–226. https://doi.org/10.1016/j.jembe.2011.02.029

    Article  Google Scholar 

  31. Lee KP, Roh C (2010) Temperature-by-nutrient interactions affecting growth rate in an insect ectotherm. Entomol Exp Appl 136:151–163. https://doi.org/10.1111/j.1570-7458.2010.01018.x

    Article  Google Scholar 

  32. Lemoine NP, Burkepile DE (2012) Temperature-induced mismatches between consumption and metabolism reduce consumer fitness. Ecology 93:2483–2489. https://doi.org/10.1890/12-0375.1

    Article  PubMed  Google Scholar 

  33. Lemoine NP, Shantz AA (2016) Increased temperature causes protein limitation by reducing the efficiency of nitrogen digestion in the ectothermic herbivore Spodoptera exigua. Physiol Entomol 41:143–151. https://doi.org/10.1111/phen.12138

    Article  CAS  Google Scholar 

  34. Lemoine NP, Drews WA, Burkepile DE, Parker JD (2013) Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122:1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x

    Article  Google Scholar 

  35. Malzahn AM, Doerfler D, Boersma M (2016) Junk food gets healthier when it’s warm. Limnol Oceanogr 61:1677–1685. https://doi.org/10.1002/lno.10330

    Article  Google Scholar 

  36. Manyak-Davis A, Bell TM, Sotka EE (2013) The relative importance of predation risk and water temperature in maintaining Bergmann’s rule in a marine ectotherm. Am Nat 182:347–358. https://doi.org/10.1086/671170

    Article  PubMed  Google Scholar 

  37. Mrowicki R, O’Connor N (2015) Wave action modifies the effects of consumer diversity and warming on algal assemblages. Ecology 96:1020–1029. https://doi.org/10.1890/14-0577.1

    Article  PubMed  Google Scholar 

  38. O’Connor MI (2009) Warming strengthens an herbivore–plant interaction. Ecology 90:388–398

    Article  PubMed  Google Scholar 

  39. Ockendon N, Baker DJ, Carr JA, White EC, Almond REA, Amano T, Bertram E, Bradbury RB, Bradley C, Butchart SHM, Doswald N, Foden W, Gill DJC, Green RE, Sutherland WJ, Tanner EVJ, Pearce-Higgins JW (2014) Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob Change Biol 20:2221–2229. https://doi.org/10.1111/gcb.12559

    Article  Google Scholar 

  40. Peart RA, Ahyong ST (2016) Phylogenetic analysis of the family Ampithoidae Stebbing, 1899 (Crustacea: Amphipoda), with a synopsis of the genera. J Crust Biol 36:456–474. https://doi.org/10.1163/1937240X-00002449

    Article  Google Scholar 

  41. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214. https://doi.org/10.1126/science.aai9214

    Article  PubMed  CAS  Google Scholar 

  42. Pennings SC, Carefoot TH (1995) Post-ingestive consequences of consuming secondary metabolites in sea hares (Gastropoda: Opisthobranchia). Comp Biochem Physiol Part C Comp 111:249–256

    Article  Google Scholar 

  43. Phelps CM, Boyce MC, Huggett MJ (2017) Future climate change scenarios differentially affect three abundant algal species in southwestern Australia. Mar Environ Res 126:69–80. https://doi.org/10.1016/j.marenvres.2017.02.008

    Article  PubMed  CAS  Google Scholar 

  44. Poore AGB, Steinberg PD (1999) Preference-performance relationships and effects of host plant choice in an herbivorous marine amphipod. Ecol Monogr 69:443–464

    Google Scholar 

  45. Poore AGB, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Emmett Duffy J (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922. https://doi.org/10.1111/j.1461-0248.2012.01804.x

    Article  PubMed  Google Scholar 

  46. Poore AGB, Graba-Landry A, Favret M, Sheppard Brennand H, Byrne M, Dworjanyn SA (2013) Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction. Oecologia 173:1113–1124. https://doi.org/10.1007/s00442-013-2683-y

    Article  PubMed  Google Scholar 

  47. Poore AGB, Graham SE, Byrne M, Dworjanyn SA (2016) Effects of ocean warming and lowered pH on algal growth and palatability to a grazing gastropod. Mar Biol 163:99. https://doi.org/10.1007/s00227-016-2878-y

    Article  CAS  Google Scholar 

  48. Schram JB, McClintock JB, Amsler CD, Baker BJ (2015) Impacts of acute elevated seawater temperature on the feeding preferences of an Antarctic amphipod toward chemically deterrent macroalgae. Mar Biol 162:425–433. https://doi.org/10.1007/s00227-014-2590-8

    Article  CAS  Google Scholar 

  49. Schram JB, Schoenrock KM, McClintock JB, Amsler CD, Angus RA (2016) Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods. Mar Ecol Prog Ser 554:81–97. https://doi.org/10.3354/meps11814

    Article  CAS  Google Scholar 

  50. Sotka EE, Giddens H (2009) Seawater temperature alters feeding discrimination by cold-temperate but not subtropical individuals of an ectothermic herbivore. Biol Bull 216:75–84. https://doi.org/10.2307/25470725

    Article  PubMed  Google Scholar 

  51. Sotka EE, Reynolds PL (2011) Rapid experimental shift in host use traits of a polyphagous marine herbivore reveals fitness costs on alternative hosts. Evol Ecol 25:1335–1355. https://doi.org/10.1007/s10682-011-9473-y

    Article  Google Scholar 

  52. Staehr PA, Wernberg T (2009) Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J Phycol 45:91–99. https://doi.org/10.1111/j.1529-8817.2008.00635.x

    Article  PubMed  CAS  Google Scholar 

  53. Stamp NE (1990) Growth versus molting time of caterpillars as a function of temperature, nutrient concentration and the phenolic rutin. Oecologia 82:107–113

    Article  PubMed  Google Scholar 

  54. Stamp N, Bowers MD (1990) Variation in food quality and temperature constrain foraging of gregarious caterpillars. Ecology 71:1031–1039

    Article  Google Scholar 

  55. Stamp NE, Yang Y (1996) Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088–1102

    Article  Google Scholar 

  56. Steinberg PD, van Altena I (1992) Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol Monogr 62:189–222

    Article  Google Scholar 

  57. Svensson F, Karlsson E, Gårdmark A, Olsson J, Adill A, Zie J, Snoeijs P, Eklöf JS, Svensson F (2017) In situ warming strengthens trophic cascades in a coastal food web. Oikos. https://doi.org/10.1111/oik.03773

    Article  Google Scholar 

  58. Therneau T (2015) A package for survival analysis in S. version 2.38, https://CRAN.R-project.org/package=survival

  59. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x

    Article  PubMed  Google Scholar 

  60. Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL Jr, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, Van Sebille E, Sen Gupta A, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:20140846. https://doi.org/10.1098/rspb.2014.0846

    Article  PubMed  PubMed Central  Google Scholar 

  61. Watts SA, Hofer SC, Desmond RA, Lawrence AL, Lawrence JM (2011) The effect of temperature on feeding and growth characteristics of the sea urchin Lytechinus variegatus fed a formulated feed. J Exp Mar Biol Ecol 397:188–195. https://doi.org/10.1016/j.jembe.2010.10.007

    Article  Google Scholar 

  62. Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78. https://doi.org/10.1038/nclimate1627

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant from the Australian Research Council (DP150102771). We thank S. Dworjanyn (Southern Cross University) for the assistance with carbon and nitrogen measurements, E. Sotka (College of Charleston) for comments that improved this manuscript, N. Coombes and A. Niccum (Sydney Institute of Marine Science) for the help with aquarium facilities, T. Stelling-Wood, B. Lanham, and L. Martin (University of New South Wales) for the experiment and field support, and J. Harianto (University of Sydney) for harbour temperature data. We thank C. Müller and three anonymous reviewers for comments that improved this manuscript.

Author information

Affiliations

Authors

Contributions

JL, MB, and AGBP conceived and designed the experiments. JL performed the experiments and analyzed the data. JL and AGBP wrote the manuscript and MB provided editorial contributions.

Corresponding author

Correspondence to Janine Ledet.

Additional information

Communicated by Caroline Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ledet, J., Byrne, M. & Poore, A.G.B. Temperature effects on a marine herbivore depend strongly on diet across multiple generations. Oecologia 187, 483–494 (2018). https://doi.org/10.1007/s00442-018-4084-8

Download citation

Keywords

  • Herbivory
  • Macroalgae
  • Amphipods
  • Survival
  • Climate change