Advertisement

Oecologia

, Volume 184, Issue 1, pp 25–41 | Cite as

Climate controls over ecosystem metabolism: insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest

  • Loren P. Albert
  • Trevor F. Keenan
  • Sean P. Burns
  • Travis E. Huxman
  • Russell K. Monson
Concepts, Reviews and Syntheses

Abstract

Eddy covariance (EC) datasets have provided insight into climate determinants of net ecosystem productivity (NEP) and evapotranspiration (ET) in natural ecosystems for decades, but most EC studies were published in serial fashion such that one study’s result became the following study’s hypothesis. This approach reflects the hypothetico-deductive process by focusing on previously derived hypotheses. A synthesis of this type of sequential inference reiterates subjective biases and may amplify past assumptions about the role, and relative importance, of controls over ecosystem metabolism. Long-term EC datasets facilitate an alternative approach to synthesis: the use of inductive data-based analyses to re-examine past deductive studies of the same ecosystem. Here we examined the seasonal climate determinants of NEP and ET by analyzing a 15-year EC time-series from a subalpine forest using an ensemble of Artificial Neural Networks (ANNs) at the half-day (daytime/nighttime) time-step. We extracted relative rankings of climate drivers and driver–response relationships directly from the dataset with minimal a priori assumptions. The ANN analysis revealed temperature variables as primary climate drivers of NEP and daytime ET, when all seasons are considered, consistent with the assembly of past studies. New relations uncovered by the ANN approach include the role of soil moisture in driving daytime NEP during the snowmelt period, the nonlinear response of NEP to temperature across seasons, and the low relevance of summer rainfall for NEP or ET at the same daytime/nighttime time step. These new results offer a more complete perspective of climate–ecosystem interactions at this site than traditional deductive analyses alone.

Keywords

Coniferous Model-data assimilation Photosynthesis Fluxnet Eddy covariance 

Notes

Acknowledgements

We are grateful for support from the US National Science Foundation (DEB Awards 1256526 and 0918565) and the US Department of Energy (NIGEC; Cooperative Agreement DE-FC03-90ER61010, BER, Grant No. DE-FG02-03ER63637, and funds from the AmeriFlux Management Project administered through DOE Lawrence-Berkeley Laboratory). We wish to thank Peter Blanken and his lab for continuing support of the US-NR1 tower. We are also grateful to Drs. David Moore, Laura Scott-Denton and Pascal Mickelson for sharing Matlab scripts to assist in analyses, and to Drs Greg Barron-Gafford, Dave Breshears, and Scott Saleska for comments that improved the manuscript. We thank two anonymous reviewers for their feedback that greatly improved the manuscript. All procedures in this research were conducted in accordance with the legal and ethical standards of the US National Science Foundation and US Department of Energy. No human subjects or animals were studied in this research.

Author contribution statement

RKM conceived the study and obtained financial support for the work. LPA performed the artificial neural network analysis and wrote the initial manuscript draft. LPA, TFK, RKM and TEH collaborated to conduct and interpret the synthesis, as well as develop the text of the manuscript. SPB collected and synthesized the Niwot Ridge AmeriFlux data and participated in writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

442_2017_3853_MOESM1_ESM.pdf (121.7 mb)
Supplementary material 1 (PDF 124575 kb)

References

  1. Abramowitz G, Pitman A, Gupta H, Kowalczyk E, Wang Y (2007) Systematic bias in land surface models. J Hydrometeor 8:989–1001. doi: 10.1175/JHM628.1 CrossRefGoogle Scholar
  2. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492CrossRefGoogle Scholar
  3. Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, Hutyra L, Saleska SR, Fitzjarrald D, Moore K (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688–1691. doi: 10.1126/science.1062962 CrossRefPubMedGoogle Scholar
  4. Beale MH, Hagan MT, Demuth HB (2014) Neural network toolboxTM user’s guide. The MathWorks, NatickGoogle Scholar
  5. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. doi: 10.1126/science.1184984 CrossRefPubMedGoogle Scholar
  6. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, OxfordGoogle Scholar
  7. Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Change Biol 11:335–355. doi: 10.1111/j.1365-2486.2005.00897.x CrossRefGoogle Scholar
  8. Burns SP, Molotch NP, Williams MW, Knowles JF, Seok B, Monson RK, Turnipseed AA, Blanken PD (2014) Snow temperature changes within a seasonal snowpack and their relationship to turbulent fluxes of sensible and latent heat. J Hydrometeor 15:117–142. doi: 10.1175/JHM-D-13-026.1 CrossRefGoogle Scholar
  9. Burns SP, Blanken PD, Turnipseed AA, Hu J, Monson RK (2015) The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site. Biogeosciences 12:7349–7377. doi: 10.5194/bg-12-7349-2015 CrossRefGoogle Scholar
  10. Burns SP, Maclean GD, Blanken PD et al (2016) The niwot ridge subalpine forest US-NR1 ameriflux site – part 1: Data acquisition and site record-keeping. Geosci Instrum Method Data Syst 5:451–471. doi: 10.17190/AMF/1246088 CrossRefGoogle Scholar
  11. Callahan JT (1984) Long-term ecological research. Bioscience 34:363–367. doi: 10.2307/1309727 CrossRefGoogle Scholar
  12. Craine JM, Nippert JB, Elmore AJ, Skibbe AM, Hutchinson SL, Brunsell NA (2012) Timing of climate variability and grassland productivity. Proc Natl Acad Sci 109:3401–3405. doi: 10.1073/pnas.1118438109 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal 2:303–314CrossRefGoogle Scholar
  14. Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007) Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiol 27:561–575CrossRefPubMedGoogle Scholar
  15. Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob Change Biol 17:886–897. doi: 10.1111/j.1365-2486.2010.02281.x CrossRefGoogle Scholar
  16. Emanuel RE, Epstein HE, McGlynn BL, Welsch DL, Muth DJ, D’Odorico P (2010) Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains. Water Resour Res 46:1–14. doi: 10.1029/2009WR008890 CrossRefGoogle Scholar
  17. Federer CA (1982) Transpirational supply and demand: plant, soil, and atmospheric effects evaluated by simulation. Water Resour Res 18:355–362CrossRefGoogle Scholar
  18. Fisher RA (1921) On the probable error of a coefficient of correlation deduced from a small sample. Metron 1:3–32Google Scholar
  19. Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Change Biol 8:599–615CrossRefGoogle Scholar
  20. Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo H, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li S, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou G (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol Manag 63:16–39. doi: 10.2111/REM-D-09-00072.1 CrossRefGoogle Scholar
  21. Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Change Biol 2:169–182. doi: 10.1111/j.1365-2486.1996.tb00070.x CrossRefGoogle Scholar
  22. Greenland D (1989) The climate of Niwot Ridge, front range, Colorado, USA. Arctic Alpine Res 21:380–391CrossRefGoogle Scholar
  23. Hilton TW, Davis KJ, Keller K (2014) Evaluating terrestrial CO2 flux diagnoses and uncertainties from a simple land surface model and its residuals. Biogeosciences 11:217–235. doi: 10.5194/bg-11-217-2014 CrossRefGoogle Scholar
  24. Hu J, Moore DJP, Burns SP, Monson RK (2010) Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob Change Biol 16:771–783. doi: 10.1111/j.1365-2486.2009.01967.x CrossRefGoogle Scholar
  25. Huxman TE, Turnipseed AA, Sparks JP, Harley PC, Monson RK (2003) Temperature as a control over ecosystem CO2 fluxes in a high-elevation, subalpine forest. Oecologia 134:537–546. doi: 10.1007/s00442-002-1131-1 CrossRefPubMedGoogle Scholar
  26. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07. doi: 10.1029/2010JG001566
  27. Keenan TF, Carbone MS, Reichstein M, Richardson AD (2011) The model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia 167:587–597. doi: 10.1007/s00442-011-2106-x CrossRefPubMedGoogle Scholar
  28. Keenan TF, Davidson E, Moffat AM, Munger W, Richardson AD (2012) Using model-data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Glob Change Biol 18:2555–2569. doi: 10.1111/j.1365-2486.2012.02684.x CrossRefGoogle Scholar
  29. Lek S, Guégan J-F (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73CrossRefGoogle Scholar
  30. Lipson DA, Monson RK, Schmidt SK, Weintraub MN (2009) The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95:23–35. doi: 10.1007/s10533-008-9252-1 CrossRefGoogle Scholar
  31. Luo YQ, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark JS, Schimel D (2011) Data assimilation and ecological forecasting in a data-rich era. Ecol Appl 21:1429–1442CrossRefPubMedGoogle Scholar
  32. Moffat AM (2012) A new methodology to interpret high resolution measurements of net carbon fluxes between terrestrial ecosystems and the atmosphere. PhD dissertation. Friedrich-Schiller-Universität, Jena, GermanyGoogle Scholar
  33. Moffat AM, Beckstein C, Churkina G, Mund M, Heimann M (2010) Characterization of ecosystem responses to climatic controls using artificial neural networks. Glob Change Biol 16:2737–2749. doi: 10.1111/j.1365-2486.2010.02171.x CrossRefGoogle Scholar
  34. Monson RK, Baldocchi DD (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. Glob Change Biol 8:459–478. doi: 10.1046/j.1365-2486.2002.00480.x CrossRefGoogle Scholar
  36. Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146:130–147. doi: 10.1007/s00442-005-0169-2 CrossRefPubMedGoogle Scholar
  37. Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006a) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem Cy 20:GB3030. doi: 10.1029/2005GB002684
  38. Monson RK, Lipson DL, Burns SP, Turnipseed AA, Burns SP, Delany A, Williams MW, Schmidt SK (2006b) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714. doi: 10.1038/nature04555 CrossRefPubMedGoogle Scholar
  39. Monson RK, Prater MR, Hu J, Burns SP, Sparks JP, Sparks KL, Scott-Denton LE (2010) Tree species effects on ecosystem water-use efficiency in a high-elevation, subalpine forest. Oecologia 162:491–504. doi: 10.1007/s00442-009-1465-z CrossRefPubMedGoogle Scholar
  40. Moore DJP, Hu J, Sacks WJ, Schimel DS, Monson RK (2008) Estimating transpiration and the sensitivity of carbon uptake to water availability in a subalpine forest using a simple ecosystem process model informed by measured net CO2 and H2O fluxes. Agr Forest Meteorol 148:1467–1477. doi: 10.1016/j.agrformet.2008.04.013 CrossRefGoogle Scholar
  41. Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193. doi: 10.1086/587826 CrossRefPubMedGoogle Scholar
  42. Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9:525–535CrossRefGoogle Scholar
  43. Pilegaard K, Ibrom A, Courtney MS, Hummelshøj P, Jensen NO (2011) Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agric For Meteorol 151:934–946. doi: 10.1016/j.agrformet.2011.02.013 CrossRefGoogle Scholar
  44. Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob Change Biol 13:788–803. doi: 10.1111/j.1365-2486.2007.01330.x CrossRefGoogle Scholar
  45. Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado. Glob Change Biol 12:240–259. doi: 10.1111/j.1365-2486.2005.01059.x CrossRefGoogle Scholar
  46. Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia 151:54–68. doi: 10.1007/s00442-006-0565-2 CrossRefPubMedGoogle Scholar
  47. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59. doi: 10.1038/nature08227 CrossRefPubMedGoogle Scholar
  48. Schmidt SK, Wilson KL, Monson RK, Lipson DA (2009) Exponential growth of “snow molds” at sub-zero temperatures: an explanation for high beneath-snow respiration rates and Q10 values. Biogeochemistry 95:13–21. doi: 10.1007/s10533-008-9247-y CrossRefGoogle Scholar
  49. Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. Soil Biol Biochem 35:525–534CrossRefGoogle Scholar
  50. Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Change Biol 12:205–216. doi: 10.1111/j.1365-2486.2005.01064.x CrossRefGoogle Scholar
  51. Scott-Denton LE, Moore DJ, Rosenbloom NA, Kittel TG, Burns SP, Schimel DS, Monson RK (2013) Forecasting net ecosystem CO2 exchange in a subalpine forest using model data assimilation combined with simulated climate and weather generation. J Geophys Res Biogeosci 118:549–565CrossRefGoogle Scholar
  52. Siqueira MB, Katul GG, Sampson DA, Stoy PC, Juang JY, McCarthy HR, Oren R (2006) Multiscale model intercomparisons of CO2 and H2O exchange rates in a maturing southeastern US pine forest. Glob Change Biol 12:1189–1207CrossRefGoogle Scholar
  53. Speckman HN, Frank JM, Bradford JB, Miles BL, Massman WJ, Parton WJ, Ryan MG (2014) Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Glob Change Biol 21:708–721. doi: 10.1111/gcb.12731 CrossRefGoogle Scholar
  54. Turnipseed AA, Blanken PD, Anderson DE, Monson RK (2002) Energy budget above a high-elevation subalpine forest in complex topography. Agr Forest Meteorol 110:177–201CrossRefGoogle Scholar
  55. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects. Agr and Forest Meteorol 119:1–21. doi: 10.1016/S0168-1923(03)00136-9 CrossRefGoogle Scholar
  56. Turnipseed AA, Burns SP, Moore DJP, Hu J, Guenther AB, Monson RK (2009) Controls over ozone deposition to a high elevation subalpine forest. Agr Forest Meteorol 149:1447–1459. doi: 10.1016/j.agrformet.2009.04.001 CrossRefGoogle Scholar
  57. Van De Laar P, Heskes T, Gielen S (1999) Partial retraining: a new approach to input relevance determination. Int J Neural Syst 9:75–85CrossRefPubMedGoogle Scholar
  58. Van Wijk MT, Bouten W (1999) Water and carbon fluxes above European coniferous forests modelled with artificial neural networks. Ecol Model 120:181–197CrossRefGoogle Scholar
  59. Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:680–683. doi: 10.1038/nature17966 CrossRefPubMedGoogle Scholar
  60. Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154:327–338. doi: 10.1007/s00442-007-0804-1 CrossRefPubMedGoogle Scholar
  61. Williams MW, Seastedt TR, Bowman WD, McKnight DM, Suding KN (2016) An overview of research from a high elevation landscape: the Niwot Ridge, Colorado long term ecological research programme. Plant Ecol Divers 8:597–605. doi: 10.1080/17550874.2015.1123320 CrossRefGoogle Scholar
  62. Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993) Net exchange of CO2 in a mid-latitude forest. Science 260:1314–1317. doi: 10.1126/science.260.5112.1314 CrossRefPubMedGoogle Scholar
  63. Xiao J, Zhuang Q, Law BE, Baldocchi DD, Chen J, Richardson AD, Melillo JM, Davis KJ, Hollinger DY, Wharton S, Oren R, Noormets A, Fischer ML, Verma SB, Cook DR, Sun G, McNulty S, Wofsy SC, Bolstad PV, Burns SP, Curtis PS, Drake BG, Falk M, Foster DR, Gu L, Hadley JL, Katul GG, Litvak M, Ma S, Martin TA, Matamala R, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw UKT, Schmid HP, Scott RL, Starr G, Suyker AE, Torn MS (2011) Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agr Forest Meteorol 151:60–69. doi: 10.1016/j.agrformet.2010.09.002 CrossRefGoogle Scholar
  64. Yi C, Anderson DE, Turnipseed AA, Burns SP, Sparks JP, Stannard DI, Monson RK (2008) The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest. Ecol Appl 18:1379–1390CrossRefPubMedGoogle Scholar
  65. Young PC (2006) The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annu Rev Control 30:169–182. doi: 10.1016/j.arcontrol.2006.05.002 CrossRefGoogle Scholar
  66. Young P, Parkinson S, Lees M (1996) Simplicity out of complexity in environmental modelling: occam’s razor revisited. J Appl Stat 23:165–210. doi: 10.1080/02664769624206 CrossRefGoogle Scholar
  67. Zobitz JM, Desai AR, Moore DJP, Chadwick MA (2011) A primer for data assimilation with ecological models using Markov Chain Monte Carlo (MCMC). Oecologia 167:599–611. doi: 10.1007/s00442-011-2107-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Loren P. Albert
    • 1
  • Trevor F. Keenan
    • 2
  • Sean P. Burns
    • 3
    • 4
  • Travis E. Huxman
    • 5
  • Russell K. Monson
    • 1
    • 6
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of GeographyUniversity of ColoradoBoulderUSA
  4. 4.National Center for Atmospheric ResearchBoulderUSA
  5. 5.Ecology and Evolutionary Biology and Center for Environmental BiologyUniversity of CaliforniaIrvineUSA
  6. 6.Laboratory of Tree Ring ResearchUniversity of ArizonaTucsonUSA

Personalised recommendations