, Volume 184, Issue 1, pp 219–235 | Cite as

Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents

  • Janne Alahuhta
  • Antti Virtala
  • Jan Hjort
  • Frauke Ecke
  • Lucinda B. Johnson
  • Laura Sass
  • Jani Heino
Community ecology – original research


Different species’ niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate–water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.


Aquatic plants Climate Lakes Latitude Niche width Water quality 



We thank Konsta Happonen for the assistance with the tables. Sampling of Finnish macrophyte data was a joint contribution of Biological Monitoring of Finnish Freshwaters under diffuse loading project (XPR3304) financed by Ministry of Agriculture and Forestry and national surveillance monitoring programmes of lakes. Swedish macrophyte data were surveyed within the Swedish Monitoring Program of macrophytes in lakes funded by the Swedish Agency for Marine and Water Management. We are grateful for Minnesota and Wisconsin Departments of Natural Resources for collecting the macrophyte data. We especially thank Carol Reschke from the University of Minnesota Duluth for her work in combining and performing quality control for the Minnesota macrophyte data used in the analysis, and the Minnesota DNR staff for collecting the macrophyte data. This study was supported by grants from the Academy of Finland (267995 and 285040). This is contribution number 607 of the Natural Resources Research institute of the University of Minnesota Duluth.

Author contribution statement

JH conceived the original idea, and JH, JA and AV designed the methodology. JA, FE, LBJ and LS provided the data, which was further processed by JA and AV. The data were analysed by JA and AV. JA wrote the manuscript, which was contributed to and approved by other authors.

Supplementary material

442_2017_3847_MOESM1_ESM.docx (153 kb)
Supplementary material 1 (DOCX 153 kb)


  1. Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft NJB (2010) The geography of climate change: implications for conservation biogeography. Divers Distrib 16:476–487. doi: 10.1111/j.1472-4642.2010.00654.x CrossRefGoogle Scholar
  2. Akasaka M, Takamura N, Mitsuhashi H, Kadono Y (2010) Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshw Biol 55:909–922. doi: 10.1111/j.1365-2427.2009.02334.x CrossRefGoogle Scholar
  3. Alahuhta J (2015) Geographic patterns of lake macrophyte communities and richness at regional extent. J Veg Sci 26:564–575. doi: 10.1111/jvs.12261 CrossRefGoogle Scholar
  4. Alahuhta J, Heino J (2013) Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J Biogeogr 40:1572–1582. doi: 10.1111/jbi.12089 CrossRefGoogle Scholar
  5. Alahuhta J, Vuori K-M, Luoto M (2011) Land use, geomorphology and climate as environmental determinants of emergent aquatic macrophytes in boreal catchments. Boreal Environ Res 16:185–202Google Scholar
  6. Alahuhta J, Kanninen A, Vuori K-M (2012) Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquat Bot 103:106–114. doi: 10.1016/j.aquabot.2012.07.003 CrossRefGoogle Scholar
  7. Alahuhta J, Kanninen A, Hellsten S, Vuori K-M, Kuoppala M, Hämäläinen H (2013) Environmental and spatial correlates of community composition, richness and status of boreal lake macrophytes. Ecol Indic 32:172–181. doi: 10.1016/j.ecolind.2013.03.031 CrossRefGoogle Scholar
  8. Alahuhta J, Kanninen A, Hellsten S, Vuori K-M, Kuoppala M, Hämäläinen H (2014) Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment. Hydrobiologia 737:201–214. doi: 10.1007/s10750-013-1722-3 CrossRefGoogle Scholar
  9. Alahuhta J, Ecke F, Johnson LB, Sass L, Heino J (2016a) A comparative analysis reveals little evidence for niche conservatism in aquatic macrophytes among four areas on two continents. Oikos. doi: 10.1111/oik.03154 Google Scholar
  10. Alahuhta J, Luukinoja J, Tukiainen H, Hjort J (2016b) Importance of spatial scale in structuring emergent lake vegetation across environmental gradients and scales: GIS-based approach. Ecol Indic 60:1164–1172. doi: 10.1016/j.ecolind.2015.08.045 CrossRefGoogle Scholar
  11. Bartoń K (2016) Model selection and model averaging based on information criteria (AICc and alike). In: MuMIn: Multi-Model Inference. Accessed 25 Oct 2016
  12. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387. doi: 10.1073/pnas.1633576100 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beck MW, Alahuhta J (2016) Ecological determinants of Potamogeton taxa in glacial lakes: assemblage composition, species richness, and species-level approach. Aquat Sci. doi: 10.1007/s00027-016-0508-x Google Scholar
  14. Beck J, Ballesteros-Mejia L, Carsten M, Buchmann M, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, Knapp S, Kreft H, Schneider A-K, Winter M, Dormann CF (2012) What’s on the horizon for macroecology? Ecography 35:673–683. doi: 10.1111/j.1600-0587.2012.07364.x CrossRefGoogle Scholar
  15. Beck M, Vondracek B, Hatch LK (2013) Environmental clustering of lakes to evaluate performance of a macrophyte index of biotic integrity. Aquat Bot 108:16–25. doi: 10.1016/j.aquabot.2013.02.003 CrossRefGoogle Scholar
  16. Bini LM, Landeiro VL, Padial AA, Siqueira T, Heino J (2014) Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95:1569–1578. doi: 10.1890/13-0656.1 CrossRefPubMedGoogle Scholar
  17. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkCrossRefGoogle Scholar
  18. Botts EA, Erasmus BFN, Alexander GJ (2012) Small range size and narrow niche breadth predict range contractions in South African frogs. Glob Ecol Biogeogr 22:567–576. doi: 10.1111/geb.12027 CrossRefGoogle Scholar
  19. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279. doi: 10.1086/284267 CrossRefGoogle Scholar
  20. Burnham KP, Anderson DR (2004) Multimodel inference -understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  21. Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89. doi: 10.1038/nature09904 CrossRefPubMedGoogle Scholar
  22. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26. doi: 10.1007/978-1-4020-8259-7_2 CrossRefGoogle Scholar
  23. Chappuis E, Ballesteros E, Gacia E (2012) Distribution and richness of aquatic plants across Europe and Mediterranean countries: patterns, environmental driving factors and comparison with total plant richness. J Veg Sci 23:985–997. doi: 10.1111/j.1654-1103.2012.01417.x CrossRefGoogle Scholar
  24. Chejanovski ZA, Wiens JJ (2014) Climatic niche breadth and species richness in temperate treefrogs. J Biogeogr 41:1936–1946. doi: 10.1111/jbi.12345 CrossRefGoogle Scholar
  25. Cirtwill AR, Stouffer DB, Romanuk TN (2015) Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proc R Soc Lond B Biol Sci 282:20151589. doi: 10.1098/rspb.2015.1589 CrossRefGoogle Scholar
  26. Crow GE (1993) Species diversity in aquatic angiosperms: latitudinal patterns. Aquat Bot 44:229–258. doi: 10.1016/0304-3770(93)90072-5 CrossRefGoogle Scholar
  27. Doledec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927. doi:10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2CrossRefGoogle Scholar
  28. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  29. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. doi: 10.18637/jss.v022.i04 CrossRefGoogle Scholar
  30. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x CrossRefPubMedGoogle Scholar
  31. Faulks L, Svanabck R, Ragnarsson-Stabo H, Eklov P, Ostman O (2015) Intraspecific niche variation drives abundance-occupancy relationships in freshwater fish communities. Am Nat 186:272–283. doi: 10.1086/682004 CrossRefPubMedGoogle Scholar
  32. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Garvia-Llorente M, Martin-Lopez B, Diaz S, Montes C (2011) Can ecosystem properties be fully translated into service values? An economic valuation of aquatic plant services. Ecol Appl 21:3083–3103. doi: 10.1890/10-1744.1 CrossRefGoogle Scholar
  34. Giraudoux P (2016) Pgirmess: data analysis in ecology.
  35. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  36. Heegaard E, Birks HH, Gibson CE, Smith SJ, Wolfe-Murphy S (2001) Species-environmental relationships of aquatic macrophytes in Northern Ireland. Aquat Bot 70:175–223. doi: 10.1016/S0304-3770(01)00161-9 CrossRefGoogle Scholar
  37. Heino J (2005) Positive relationship between regional distribution and local abundance in stream insects: a consequence of niche breadth or niche position? Ecography 28:345–354. doi: 10.1111/j.0906-7590.2005.04151.x CrossRefGoogle Scholar
  38. Heino J (2011) A macroecological perspective of diversity patterns in the freshwater realm. Freshw Biol 56:1703–1722. doi: 10.1111/j.1365-2427.2011.02610.x CrossRefGoogle Scholar
  39. Heino J, Grönroos M (2014) Untangling the relationships among regional occupancy, species traits, and niche characteristics in stream invertebrates. Ecol Evol 4:1931–1942. doi: 10.1002/ece3.1076 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Heino J, Toivonen H (2008) Aquatic plant biodiversity at high latitudes: patterns of richness and rarity in Finnish freshwater macrophytes. Boreal Environ Res 13:1–14Google Scholar
  41. Heino J, Soininen J, Alahuhta J, Lappalainen J, Virtanen R (2015a) A comparative analysis of metacommunity types in the freshwater realm. Ecol Evol 5:1525–1537. doi: 10.1002/ece3.1460 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Heino J, Melo AS, Bini LM, Altermatt F, Al-Shami SA, Angeler D, Bonada N, Brand C, Callisto M, Cottenie K, Dangles O, Dudgeon D, Encalada A, Göthe E, Grönroos M, Hamada N, Jacobsen D, Landeiro VL, Ligeiro R, Martins RT, Miserendino ML, Md Rawi CS, Rodrigues M, Roque FO, Sandin L, Schmera D, Sgarbi LF, Simaika J, Siqueira T, Thompson RM, Townsend CR (2015b) A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecol Evol 5:1235–1248. doi: 10.1002/ece3.1439 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Henriques-Silva R, Lindo Z, Peres-Neto PR (2013) A community of metacommunities: exploring patterns in species distributions across large geographical areas. Ecology 94:627–639. doi: 10.1890/12-0683.1 CrossRefPubMedGoogle Scholar
  44. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  45. Hinden H, Oertli B, Menetrey N, Sager L, Lachavanne J-B (2005) Alpine pond biodiversity: what are the related environmental variables? Aquat Conserv Mar Freshw Ecosyst 15:613–624. doi: 10.1002/aqc.751 CrossRefGoogle Scholar
  46. Kockemann B, Buschmann H, Leuschner C (2009) The relationships between abundance, range size and niche breadth in Central European tree species. J Biogeogr 36:854–864. doi: 10.1111/j.1365-2699.2008.02022.x CrossRefGoogle Scholar
  47. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. doi: 10.1016/j.tree.2007.09.006 CrossRefPubMedGoogle Scholar
  48. Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of β-diversity along latitudinal and elevational gradients. Science 333:1755–1758. doi: 10.1126/science.12085584 CrossRefPubMedGoogle Scholar
  49. Lappalainen J, Soininen J (2006) Altitudinal gradients in niche breadth and position—regional patterns in freshwater fish. Naturwissenschaften 93:246–250CrossRefPubMedGoogle Scholar
  50. Lind L, Nilsson C, Polvi LE, Weber C (2014) The role of ice dynamics in shaping vegetation in flowing waters. Biol Rev 89:791–804. doi: 10.1111/brv.12077 CrossRefPubMedGoogle Scholar
  51. Low-Decarie E, Chivers C, Granados M (2014) Rising complexity and falling explanatory power in ecology. Front Ecol Environ 12:412–418. doi: 10.1890/130230 CrossRefGoogle Scholar
  52. MacArthur RH (1968) The theory of the niche. In: Lewontin RC (ed) Population biology and evolution. Syracuse University Press, Syracuse, pp 159–176Google Scholar
  53. MacArthur RH (1972) Geographical ecology. Princeton University Press, PrincetonGoogle Scholar
  54. Matthews TJ (2014) Integrating geoconservation and biodiversity conservation: theoretical foundations and conservation recommendations in a European Union context. Geoheritage 6:57–70. doi: 10.1007/s12371-013-0092-6 CrossRefGoogle Scholar
  55. McCauley SJ, Davis CJ, Werner EE, Robeson MS (2014) Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. J Anim Ecol 83:858–865. doi: 10.1111/1365-2656.12181 CrossRefPubMedGoogle Scholar
  56. Morin X, Lechowicz J (2013) Niche breadth and range area in North American trees. Ecography 36:300–312. doi: 10.1111/j.1600-0587.2012.07340.x CrossRefGoogle Scholar
  57. Nathans L, Oswald FL, Nimon K (2012) Interpreting multiple linear regression: a guidebook of variable importance. Pract Assess Res Eval 17:1–19.
  58. Naturvårdsverket (2010) Handledning för miljöövervakning - Undersökningstyp: Makrofyter i sjöar. Available at
  59. Nimon K, Oswald F, Roberts JK (2013) Yhat: interpreting regression effects.
  60. Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125. doi: 10.1111/j.1467-8306.1987.tb00149.x CrossRefGoogle Scholar
  61. Papacostas KJ, Freestone AL (2016) Latitudinal gradient in niche breadth of brachyuran crabs. Glob Ecol Biogeogr 25:207–217. doi: 10.1111/geb.12400 CrossRefGoogle Scholar
  62. Petrocelli JV (2003) Hierarchical multiple regression in counselling research: common problems and possible remedies. Meas Eval Couns Dev 36:9–22Google Scholar
  63. Rasmann S, Alvarez N, Pellissier L (2014) The altitudinal niche-breadth hypothesis in insect-plant interactions. Ann Plant Rev 47:339–360. doi: 10.1002/9781118829783.ch10 CrossRefGoogle Scholar
  64. Ray-Mukherjee J, Nimon K, Mukherjee S, Morris DW, Slotow R, Hamer M (2014) Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity. Methods Ecol Evol 5:320–328. doi: 10.1111/2041-210X.12166 CrossRefGoogle Scholar
  65. Ricklefs RE (2008) Disintegration of the ecological community. Am Nat 172:741–750. doi: 10.1086/593002 CrossRefPubMedGoogle Scholar
  66. Rørslett B (1991) Principal determinants of aquatic macrophyte species richness in northern European lakes. Aquat Bot 39:173–193. doi: 10.1016/0304-3770(91)90031-Y CrossRefGoogle Scholar
  67. Sass LL, Bozek MA, Hauxwell JA, Wagner K, Knight S (2010) Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, U.S.A. Aquat Bot 93:1–8. doi: 10.1016/j.aquabot.2010.02.001 CrossRefGoogle Scholar
  68. Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114. doi: 10.1111/ele.12140 CrossRefPubMedGoogle Scholar
  69. Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Lond B Biol Sci 278:1823–1830. doi: 10.1098/rspb.2010.1295 CrossRefGoogle Scholar
  70. Tonkin JD, Tachamo RD, Shah DN, Hoppeler F, Jähnig SC, Pauls SU (2016) Metacommunity structuring in Himalayan streams over large elevational gradients: the role of dispersal routes and niche characteristics. J Biogeogr. doi: 10.1111/jbi.12895 Google Scholar
  71. Vazques DP, Stevens RD (2004) The latitudinal gradients in niche breadth: concepts and evidence. Am Nat 164:E1–E19. doi: 10.1086/421445 CrossRefGoogle Scholar
  72. Vestergaard O, Sand-Jensen K (2006) Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Can J Fish Aquat Sci 57:2022–2031. doi: 10.1139/f00-156 CrossRefGoogle Scholar
  73. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. doi: 10.1146/annurev.ecolsys.34.012103.144032 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Janne Alahuhta
    • 1
    • 2
  • Antti Virtala
    • 1
  • Jan Hjort
    • 1
  • Frauke Ecke
    • 3
    • 4
  • Lucinda B. Johnson
    • 5
  • Laura Sass
    • 6
  • Jani Heino
    • 7
  1. 1.Geography Research UnitUniversity of OuluOuluFinland
  2. 2.Freshwater CentreFinnish Environment InstituteOuluFinland
  3. 3.Department of Aquatic Sciences and AssessmentSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  4. 4.Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeåSweden
  5. 5.Natural Resources Research InstituteUniversity of Minnesota DuluthDuluthUSA
  6. 6.Illinois Natural History Survey, Prairie Research InstituteUniversity of IllinoisChampaignUSA
  7. 7.Natural Environment Centre, BiodiversityFinnish Environment InstituteOuluFinland

Personalised recommendations