Oecologia

, Volume 184, Issue 1, pp 193–203 | Cite as

Intraspecific and phylogenetic density-dependent seedling recruitment in a subtropical evergreen forest

  • Yanjun Du
  • Simon A. Queenborough
  • Lei Chen
  • Yunquan Wang
  • Xiangcheng Mi
  • Keping Ma
  • Liza S. Comita
Community ecology – original research

Abstract

Recent evidence suggests that plant performance can be influenced by the phylogenetic diversity of neighboring plants. However, no study to date has examined the effect of such phylogenetic density dependence on the transition from seed to seedling. Using 6 years of data on seedling recruitment and seed rain of 13 species from 130 stations (one 0.5 m2 seed trap and three adjacent 1 m2 seedling plots) in a subtropical evergreen forest, we asked: (1) Does negative density dependence act across seed to seedling stages? (2) Is there evidence for phylogenetic density dependence during the seed to seedling transition? (3) Does the strength of density dependence vary among years? Generalized linear mixed-effects models were used to model seed to seedling transition as a function of conspecific seed and seedling densities, heterospecific seed and seedling densities, and mean phylogenetic distance of heterospecific seeds and seedling. Conspecific seed density had a significant negative effect on seedling transition rates for 12 of 13 focal species. In contrast, conspecific seedling density had a positive effect for 7 species, suggesting species-specific habitat preferences. Few species were significantly affected by the density or phylogenetic relatedness of heterospecific seeds and seedlings. Only conspecific seed density effects varied among years for most focal species. Overall, our results reveal that conspecific seed and seedling densities play a more important role than the density or relatedness of heterospecific seeds and seedlings during the seed to seedling stage, suggesting that species-specific seed predators, along with habitat preferences, may contribute to diversity maintenance in this forest.

Keywords

Janzen–Connell hypothesis Phylogenetic relatedness Seed Seedling Species coexistence 

Notes

Acknowledgements

We thank Dr. Lebrija-Trejos for sharing R code for calculating phylodiversity and Jinlong Zhang for building the phylogenetic tree. Yanjun Du was financially supported by Research Division of Biodiversity and Conservation Ecology (80006F2005) and National Natural Science Foundation of China (Y32H3A1001). Yanjun Du is appreciative of the visiting scholar program at Yale University and the China Scholarship Council, which supported his visit.

Author contribution statement

YJD, KPM and LSC developed the original idea; LC, XCM and YJD conducted the fieldwork. YJD, YQW, and LSC analyzed the data. YJD, SAQ, LSC and KPM wrote the manuscript.

Supplementary material

442_2017_3842_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2808 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bachelot B, Kobe RK, Vriesendorp C (2015) Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia 179:853–861. doi: 10.1007/s00442-015-3402-7 CrossRefPubMedGoogle Scholar
  3. Bagchi R, Swinfield T, Gallery RE, Lewis OT, Gripenberg S, Narayan L, Freckleton RP (2010) Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecol Lett 13:1262–1269. doi: 10.1111/j.1461-0248.2010.01520.x CrossRefPubMedGoogle Scholar
  4. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rain forest plant diversity and composition. Nature 506:85–88. doi: 10.1038/nature12911 CrossRefPubMedGoogle Scholar
  5. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using s4 classes. R Package Version 3.0.3. http://CRAN.R-project.org/package=lme4. Accessed 22 June 2012
  6. Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol Lett 9:569–574. doi: 10.1111/j.1461-0248.2006.00905.x CrossRefPubMedGoogle Scholar
  7. Chen L, Mi XC, Comita LS, Zhang LW, Ren HB, Ma KP (2010) Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecol Lett 13:695–704. doi: 10.1111/j.1461-0248.2010.01468.x CrossRefPubMedGoogle Scholar
  8. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Evol Syst 31:343–366. doi: 10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  9. Comita LS, Hubbell SP (2009) Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 90:328–334. doi: 10.1890/08-0451.1 CrossRefPubMedGoogle Scholar
  10. Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK (2009) Abiotic and biotic drivers of seedling survival in a hurricane-impacted forest. J Ecol 97:1346–1359. doi: 10.1111/j.1365-2745.2009.01551.x CrossRefGoogle Scholar
  11. Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330–332. doi: 10.1126/science.1190772 CrossRefPubMedGoogle Scholar
  12. Comita LS, Queenborough SA, Murphy S, Eck JL, Xu KY, Krishnadas M, Beckman N, Zhu Y (2014) Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance and density-dependent seed and seedling survival. J Ecol 102:845–856. doi: 10.1111/1365-2745.12232 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In: der Boer PJ, Gradell GR (eds) Dynamics of numbers in populations. Center for Agricultural Publishing and Documentation, Wageningen, pp 298–312Google Scholar
  14. Denslow JS (1987) Tropical rain forest gaps and tree species diversity. Annu Rev Ecol Evol Syst 18:431–451. doi: 10.1146/annurev.es.18.110187.002243 CrossRefGoogle Scholar
  15. Du YJ, Ma KP (2012) Temporal and spatial variation of seedfall in a broad-leaved evergreen forest in Gutianshan nature reserve of Zhejiang Province, China. Chin J Plant Ecol 36:717–728. doi: 10.3724/SP.J.1258.2012.00717 CrossRefGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feng G, Svenning J, Mi XC, Jia Q, Rao MD, Ren HB, Bebber DP, Ma KP (2014) Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest. For Ecol Manag 313:188–198. doi: 10.1016/j.foreco.2013.10.047 CrossRefGoogle Scholar
  18. Fenner M (1985) Seed Ecology. Chapman and Hall, New York. doi: 10.1007/978-94-009-4884-0 CrossRefGoogle Scholar
  19. Fritschie KJ, Cardinale BJ, Alexandrou MA, Oakley TH (2013) Evolutionary history and the strength of species interactions: testing the phylogenetic limiting similarity hypothesis. Ecology 95:1407–1417. doi: 10.1890/13-0986.1 CrossRefGoogle Scholar
  20. Garzon-Lopez CX, Ballesteros-Mejia L, Ordoñez A, Bohlman SA, Olff H, Jansen PA (2015) Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence. Ecol Lett 18:752–760. doi: 10.1111/ele.12452 CrossRefPubMedGoogle Scholar
  21. Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA 104:4979–4983. doi: 10.1073/pnas.0607968104 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanski I, Hansson Henttonen L (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Ecol 60:353–367. doi: 10.2307/5465 CrossRefGoogle Scholar
  23. Harms KE, Wright SJ, Calderon O, Hernandez A, Herre EA (2000) Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493–495. doi: 10.1038/35006630 CrossRefPubMedGoogle Scholar
  24. Hille Ris Lambers J, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417:732–735. doi: 10.1038/nature00809 CrossRefGoogle Scholar
  25. Hu ZH, Yu MJ, Ding BY, Fang T, Qian HY, Chen QC (2003) Types of evergreen broadleaved forests and the species diversity in Gutianshan Mountain nature reserve. Chin J Appl Environ Biol 9:341–345Google Scholar
  26. Ibanez I, Clark JS, LaDeau S, Hille Ris Lambers J (2007) Exploiting temporal variability to understand tree recruitment response to climate change. Ecol Monogr 77:163–177. doi: 10.1890/06-1097 CrossRefGoogle Scholar
  27. Inman-Narahari F, Ostertag F, Hubbell SP, Giardina CP, Cordell S, Sack L (2016) Density-dependent seedling mortality varies with light availability and species abundance in wet and dry Hawaiian forests. J Ecol 104:773–780. doi: 10.1111/1365-2745.12553 CrossRefGoogle Scholar
  28. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528. doi: 10.1086/282687 CrossRefGoogle Scholar
  29. Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952. doi: 10.2307/2259466 CrossRefGoogle Scholar
  30. Johnson D, Beaulieu WT, Bever JD, Clay K (2012) Conspecific negative density dependence and forest diversity. Science 336:904–907. doi: 10.1126/science.1220269 CrossRefPubMedGoogle Scholar
  31. Jones FA, Comita LS (2010) Density-dependent pre-dispersal seed predation and fruit set in a tropical tree. Oikos 119:1841–1847. doi: 10.1111/j.1600-0706.2010.18547.x CrossRefGoogle Scholar
  32. Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and freshsamples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:74. doi: 10.1023/A:1007528101452 CrossRefGoogle Scholar
  33. Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626. doi: 10.1073/pnas.0909820106 CrossRefPubMedPubMedCentralGoogle Scholar
  34. LaManna JA, Walton ML, Turner BL, Myers JA (2016) Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett 19:657–667. doi: 10.1111/ele.12603 CrossRefPubMedGoogle Scholar
  35. Lebrija-Trejos E, Wright SJ, Hernandez A, Reich PB (2014) Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology 95:940–951. doi: 10.1890/13-0623.1 CrossRefPubMedGoogle Scholar
  36. Lebrija-Trejos E, Reich PB, Hernandez A, Wright SJ (2016) Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol Lett 19:1071–1080. doi: 10.1111/ele.12643 CrossRefPubMedGoogle Scholar
  37. Letten AD, Cornwell WK (2015) Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods Ecol Evol 6:439–444. doi: 10.1111/2041-210X.12237 CrossRefGoogle Scholar
  38. Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S (2015) Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96:562–574. doi: 10.1890/14-0871.1 CrossRefPubMedGoogle Scholar
  39. Lin LX, Comita LS, Zheng Z, Cao M (2012) Seasonal differentiation in density-dependent seedling survival in a tropical rainforest. J Ecol 100:905–914. doi: 10.1111/j.1365-2745.2012.01964.x CrossRefGoogle Scholar
  40. Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX (2012) Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecol Lett 15:111–118. doi: 10.1111/j.1461-0248.2011.01715.x CrossRefPubMedGoogle Scholar
  41. Masaki T, Osumi K, Takahashi K, Hoshizaki K, Matsune K, Suzuki W (2007) Effects of microenvironmental heterogeneity on the seed-to-seedling process and tree coexistence in a riparian forest. Ecol Res 22:724–734. doi: 10.1007/s11284-006-0308-1 CrossRefGoogle Scholar
  42. Metz MR, Sousa WP, Valencia R (2010) Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology 91:3675–3685. doi: 10.1890/08-2323.1 CrossRefPubMedGoogle Scholar
  43. Mi XC, Swenson NG, Jia Q, Rao MD, Feng G, Ren HB, Bebber DP, Ma KP (2016) Stochastic assembly in a subtropical forest chronosequence: evidence from contrasting changes of species, phylogenetic and functional dissimilarity over succession. Sci Rep 6:32596. doi: 10.1038/srep32596 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA, Gilbert GS, Maron J, Mitchell CE, Parker IM, Power AG, Torchin ME, Vazquez DP (2007) Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–1029. doi: 10.1890/06-0442 CrossRefPubMedGoogle Scholar
  45. Muscarella R, Uriarte M, Forero-Montaña J, Comita LS, Swenson NG, Thompson J, Nytch CJ, Jonckheere I, Zimmerman JK (2013) Life-history trade-offs during the seed-to-seedling transition in a subtropical wet forest community. J Ecol 101:171–182. doi: 10.1111/1365-2745.12027 CrossRefGoogle Scholar
  46. Narwani A, Alexandrou MA, Oakley TH, Carroll IT, Cardinale BJ (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecol Lett 16:1373–1381. doi: 10.1111/1365-2745.12027 CrossRefPubMedGoogle Scholar
  47. Naughton HR, Alexandrou MA, Oakley TH, Cardinale BJ (2015) Phylogenetic distance does not predict competition in green algal communities. Ecosphere 6:1–19. doi: 10.1890/ES14-00502.1 CrossRefGoogle Scholar
  48. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844. doi: 10.1038/416841a CrossRefPubMedGoogle Scholar
  49. Paine CET, Harms KE, Schnitzer SA, Carson WP (2008) Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40:432–440. doi: 10.1111/j.1744-7429.2007.00390.x CrossRefGoogle Scholar
  50. Paine CET, Norden N, Chave J, Forget PM, Fortunel C, Dexter KG, Baraloto C (2012) Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecol Lett 15:34–41. doi: 10.1111/j.1461-0248.2011.01705.x CrossRefPubMedGoogle Scholar
  51. Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2007) Neighborhood and community interactions determine the spatial pattern of tropical tree seedling survival. Ecology 88:2248–2258. doi: 10.1890/06-0737.1 CrossRefPubMedGoogle Scholar
  52. R Development Core Team (2014) R: a Language and environment for statistical computing. R Foundation for Statistical Computing. Available at http://www.R-project.org. Accessed 6 Mar 2014
  53. Sanderson MJ (2003) r8 s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302. doi: 10.1093/bioinformatics/19.2.301 CrossRefPubMedGoogle Scholar
  54. Shi LL, Luo ZR, Xia JT, Zhao WJ, Wu YG, Ding BY (2014) Woody seedling dynamics and the correlation between habitat and regeneration mortality in a subtropical evergreen broad-leaved forest in China. Acta Ecol Sin 34:6510–6518. doi: 10.5846/stxb201302150268 Google Scholar
  55. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  56. Swamy V, Terborgh J, Dexter KG, Best BD, Alvarez P, Cornejo F (2011) Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecol Lett 14:195–201. doi: 10.1111/j.1461-0248.2010.01571.x CrossRefPubMedGoogle Scholar
  57. Umaña MN, Forero-Montaña J, Muscarella R, Nytch CJ, Uriarte M, Zimmerman JK, Swenson NG (2016) Inter-specific functional convergence and divergence and intra-specific negative density dependence underlie the seed-to-seedling transition in tropical trees. Am Nat 187:99–109. doi: 10.1086/684174 CrossRefPubMedGoogle Scholar
  58. Uriarte M, Condit R, Canham CD, Hubbell SP (2004) A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter? J Ecol 92:348–360. doi: 10.1111/j.0022-0477.2004.00867.x CrossRefGoogle Scholar
  59. Venail PA, Narwani A, Fritschie K, Alexandrou MA, Oakley TH, Cardinale BJ (2014) The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. J Ecol 102:1288–1299. doi: 10.1111/1365-2745.12271 CrossRefGoogle Scholar
  60. Webb CO, Gilbert GS, Donoghue MJ (2006) Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87:123–131. doi: 10.1890/0012-9658(2006)87 CrossRefGoogle Scholar
  61. Wills C (1996) Safety in diversity. N Sci 149:38–42Google Scholar
  62. Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14. doi: 10.1007/s004420100809 CrossRefGoogle Scholar
  63. Wright SJ, Muller-Landau HC, Calderon O, Hernandez A (2005) Annual and spatial variation in seed fall and seedling recruitment in a neotropical forest. Ecology 86:848–860. doi: 10.1007/s004420100809 CrossRefGoogle Scholar
  64. Wright SJ, Calderon O, Hernandez A, Detto M, Jansen PA (2016) Interspecific associations in seed arrival and seedling recruitment in a neotropical forest. Ecology 97:2780–2790. doi: 10.1002/ecy.1519 CrossRefPubMedGoogle Scholar
  65. Wu JJ, Swenson NG, Brown C, Zhang CC, Yang J, Ci XQ, Li J, Sha LQ, Cao M, Lin LX (2016) How does habitat filtering affect the detection of conspecific and phylogenetic density dependence? Ecology 97:1182–1193. doi: 10.1890/14-2465.1 CrossRefPubMedGoogle Scholar
  66. Zhang JL, Mi XC, Pei NC (2010) Phylotools: phylogenetic tools for ecologists. R package version 0.0.7.4. 201019Google Scholar
  67. Zhu Y, Mi XC, Ren HB, Ma KP (2010) Density dependence is prevalent in a heterogeneous subtropical forest. Oikos 119:109–119. doi: 10.1111/j.1600-0706.2009.17758 CrossRefGoogle Scholar
  68. Zhu Y, Getzin S, Wiegand S, Ren HB, Ma KP (2013) The relative importance of Janzen-Connell effects in influencing the spatial patterns at the Gutianshan subtropical forest. PLoS One 8(9):e74560. doi: 10.1371/journal.pone.0074560 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhu Y, Comita LS, Hubbell SP, Ma KP (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J Ecol 103:957–966. doi: 10.1111/1365-2745.12414 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yanjun Du
    • 1
  • Simon A. Queenborough
    • 2
  • Lei Chen
    • 1
  • Yunquan Wang
    • 3
  • Xiangcheng Mi
    • 1
  • Keping Ma
    • 1
  • Liza S. Comita
    • 2
    • 4
  1. 1.State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
  2. 2.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  3. 3.College of Life SciencesBeijing Normal UniversityBeijingChina
  4. 4.Smithsonian Tropical Research InstituteBalboaPanama

Personalised recommendations