, Volume 184, Issue 1, pp 75–86 | Cite as

Habitat degradation increases stress-hormone levels during the breeding season, and decreases survival and reproduction in adult common lizards

  • Rémy Josserand
  • Andréaz Dupoué
  • Simon Agostini
  • Claudy Haussy
  • Jean-François Le Galliard
  • Sandrine Meylan
Physiological ecology - original research


The allostatic load model describes how individuals maintain homeostasis in challenging environment and posits that costs induced by a chronic perturbation (i.e., allostatic load) are correlated to the secretion of glucocorticoids, such as corticosterone. Habitat perturbations from anthropogenic activities are multiple and functional responses to those are still unclear. Here, we manipulated the habitat quality in 24 semi-natural populations of the common lizard during 1 year. We tested the predictions of the allostatic load model that habitat degradation should increase baseline corticosterone levels, and should induce concomitant physiological changes, such as lipid mobilization and lower immunocompetence, and demographic changes, such as lower body growth, survival and/or reproductive performances. Our results highlight stage-dependent effects of habitat degradation on physiological traits during the breeding season: adult lizards had higher baseline corticosterone levels and yearling lizards had a lower inflammatory response than adults, whereas juveniles had higher circulating lipid levels than yearlings and adults without concomitant change in corticosterone levels. In addition, habitat degradation reduced the performances of adults but not of juveniles: in low habitat quality populations, adult males had a lower survival and females had a smaller fecundity. These results are in accordance with the allostatic load model given that allostatic load was detected only during the season and in life stages of maximal energy expenditure. This underlines the importance to account for individual energy requirements to better understand demographic responses to habitat perturbation.


Allostasis Corticosterone Fitness Immunocompetence Triglycerides 



We are thankful to students and staff at the CEREEP, especially Samuel Perret and Beatriz Decencière, for assistance in the field and laboratory. This study was funded by the CNRS, the Agence Nationale de la Recherche (ANR-13-JSV7-0011-01 to S.M.) and the Région Île-de-France R2DS program (grant 2013-08 to S.M., J.F.L.G. and R.J.). Protocols were done under the agreement with the Regional ethics committee in animal experiment No3 of the Région Île-de-France. The authors declare that they have no conflict of interest.

Author contribution statement

RJ, SM, and JFLG conceived and designed this study, performed statistical analyses and wrote the manuscript. RJ, SM, JFLG, AD, and SA performed the experiment. RJ, AD, and CH provided biochemical analyses.


  1. Almasi B, Beziers P, Roulin A, Jenni L (2015) Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia 179:89–101. doi: 10.1007/s00442-015-3318-2 CrossRefPubMedGoogle Scholar
  2. Angelier F, Wingfield JC (2013) Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen Comp Endocrinol 190:118–128. doi: 10.1016/j.ygcen.2013.05.022 CrossRefPubMedGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  4. Bauwens D, Verheyen RF (1985) The Timing of reproduction in the lizard Lacerata-Vivipara—differences between individual females. J Herpetol 19:353–364. doi: 10.2307/1564263 CrossRefGoogle Scholar
  5. Bauwens D, Vandamme R, Verheyen RF (1989) Synchronization of spring molting with the onset of Mating-behavior in male lizards, Lacerta-Vivipara. J Herpetol 23:89–91. doi: 10.2307/1564326 CrossRefGoogle Scholar
  6. Bleu J, Le Galliard JF, Fitze PS et al (2013) Reproductive allocation strategies: a long-term study on proximate factors and temporal adjustments in a viviparous lizard. Oecologia 171:141–151. doi: 10.1007/s00442-012-2401-1 CrossRefPubMedGoogle Scholar
  7. Bonier F, Martin PR, Moore IT, Wingfield JC (2009) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642. doi: 10.1016/j.tree.2009.04.013 CrossRefPubMedGoogle Scholar
  8. Brown GP, Shilton CM, Shine R (2011) Measuring amphibian immunocompetence: validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol Evol 2:341–348. doi: 10.1111/j.2041-210X.2011.00090.x CrossRefGoogle Scholar
  9. Chamaille-Jammes S, Massot M, Aragon P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Chang Biol 12:392–402. doi: 10.1111/j.1365-2486.2005.01088.x CrossRefGoogle Scholar
  10. Cote J, Clobert J, Meylan S, Fitze PS (2006) Experimental enhancement of corticosterone levels positively affects subsequent male survival. Horm Behav 49:320–327. doi: 10.1016/j.yhbeh.2005.08.004 CrossRefPubMedGoogle Scholar
  11. Cote J, Clobert J, Poloni LM et al (2010) Food deprivation modifies corticosterone-dependent behavioural shifts in the common lizard. Gen Comp Endocrinol 166:142–151. doi: 10.1016/j.ygcen.2009.11.008 CrossRefPubMedGoogle Scholar
  12. Dauphin-Villemant C, Xavier F (1987) Nychthemeral variations of plasma corticosteroids in captive Female Lacerta vivipara Jacquin—influence of stress and reproductive state. Gen Comp Endocrinol 67:292–302. doi: 10.1016/0016-6480(87)90183-3 CrossRefPubMedGoogle Scholar
  13. De Fraipont M, Clobert J, John H, Alder S (2000) Increased pre-natal maternal corticosterone promotes philopatry of offspring in common lizards Lacerta vivipara. J Anim Ecol 69:404–413. doi: 10.1046/j.1365-2656.2000.00405.x CrossRefGoogle Scholar
  14. Ellenberg U, Setiawan AN, Cree A et al (2007) Elevated hormonal stress response and reduced reproductive output in Yellow-eyed penguins exposed to unregulated tourism. Gen Comp Endocrinol 152:54–63. doi: 10.1016/j.ygcen.2007.02.022 CrossRefPubMedGoogle Scholar
  15. Escribano-Avila G, Pettorelli N, Virgós E et al (2013) Testing Cort-Fitness and Cort-Adaptation hypotheses in a habitat suitability gradient for roe deer. Acta Oecol 53:38–48. doi: 10.1016/j.actao.2013.08.003 CrossRefGoogle Scholar
  16. Fefferman NH, Romero LM (2013) Can physiological stress alter population persistence? A model with conservation implications. Conserv Physiol 1:13. doi: 10.1093/conphys/cot012 CrossRefGoogle Scholar
  17. Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622CrossRefGoogle Scholar
  18. Holmgren M, Scheffer M, Ezcurra E et al (2001) El Nino effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94. doi: 10.1016/s0169-5347(00)02052-8 CrossRefPubMedGoogle Scholar
  19. Homan RN, Reed JM, Romero LM (2003) Corticosterone concentrations in free-living spotted salamanders (Ambystoma maculatum). Gen Comp Endocrinol 130:165–171. doi: 10.1016/s0016-6480(02)00578-6 CrossRefPubMedGoogle Scholar
  20. Janin A, Lena J-P, Joly P (2010) Beyond occurrence: body condition and stress hormone as integrative indicators of habitat availability and fragmentation in the common toad. Biol Conserv 144:1008–1016. doi: 10.1016/j.biocon.2010.12.009 CrossRefGoogle Scholar
  21. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress—a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 16:115–130. doi: 10.1016/s0149-7634(05)80175-7 CrossRefPubMedGoogle Scholar
  22. Kuznetsov VA, Tchabovsky AV, Kolosova IE, Moshkin MP (2004) Effect of habitat type and population density on the stress level of midday gerbils (Meriones mefidianus pall.) in free-living populations. Biol Bull 31:628–632. doi: 10.1023/B:BIBU.0000049736.02912.e2 CrossRefGoogle Scholar
  23. Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149. doi: 10.1016/j.ygcen.2006.02.013 CrossRefPubMedGoogle Scholar
  24. Le Galliard JF, Ferriere R, Clobert J (2005) Juvenile growth and survival under dietary restriction: are males and females equal? Oikos 111:368–376. doi: 10.1111/j.0030-1299.2005.14163.x CrossRefGoogle Scholar
  25. Le Galliard JF, Marquis O, Massot M (2010) Cohort variation, climate effects and population dynamics in a short-lived lizard. J Anim Ecol 79:1296–1307. doi: 10.1111/j.1365-2656.2010.01732.x CrossRefPubMedGoogle Scholar
  26. Lecomte J, Clobert J (1996) Dispersal and connectivity in populations of the common lizard Lacerta vivipara: an experimental approach. Acta Oecol 17:585–598Google Scholar
  27. Lenth R (2015) Using lsmeans. 1–28Google Scholar
  28. Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121. doi: 10.2307/4087240 CrossRefGoogle Scholar
  29. Lorenzon P, Clobert J, Oppliger A, John-Alder H (1999) Effect of water constraint on growth rate, activity and body temperature of yearling common lizard (Lacerta vivipara). Oecologia 118:423–430. doi: 10.1007/s004420050744 CrossRefPubMedGoogle Scholar
  30. Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution (N Y) 55:392–404Google Scholar
  31. Marquis O, Massot M, Le Galliard JF (2008) Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 89:2575–2583. doi: 10.1890/07-1211.1 CrossRefPubMedGoogle Scholar
  32. Martin LB, Han P, Lewittes J et al (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299. doi: 10.1111/j.1365-2435.01094.x CrossRefGoogle Scholar
  33. Massot M, Clobert J, Pilorge T et al (1992) Density dependence in the common lizard : demographic consequences of a density manipulation 73:1742–1756Google Scholar
  34. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15. doi: 10.1016/s0018-506x(02)00024-7 CrossRefPubMedGoogle Scholar
  35. McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–111. doi: 10.1016/j.yhbeh.2009.09.011 CrossRefPubMedGoogle Scholar
  36. Meylan S, Clobert J (2005) Is corticosterone-mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Horm Behav 48:44–52. doi: 10.1016/j.yhbeh.2004.11.022 CrossRefPubMedGoogle Scholar
  37. Meylan S, Belliure J, Clobert J, de Fraipont M (2002) Stress and body condition as prenatal and postnatal determinants of dispersal in the common lizard (Lacerta vivipara). Horm Behav 42:319–326. doi: 10.1006/hbeh.2002.1827 CrossRefPubMedGoogle Scholar
  38. Meylan S, Haussy C, Voituron Y (2010) Physiological actions of corticosterone and its modulation by an immune challenge in reptiles. Gen Comp Endocrinol 169:158–166. doi: 10.1016/j.ygcen.2010.08.002 CrossRefPubMedGoogle Scholar
  39. Mugabo M, Marquis O, Perret S, Le Galliard JF (2010) Immediate and delayed life history effects caused by food deprivation early in life in a short-lived lizard. J Evol Biol 23:1886–1898. doi: 10.1111/j.1420-9101.2010.02052.x CrossRefPubMedGoogle Scholar
  40. Mugabo M, Marquis O, Perret S, Le Galliard JF (2011) Direct and socially-mediated effects of food availability late in life on life-history variation in a short-lived lizard. Oecologia 166:949–960. doi: 10.1007/s00442-011-1933-0 CrossRefPubMedGoogle Scholar
  41. Mugabo M, Perret S, Legendre S, Le Galliard JF (2013) Density-dependent life history and the dynamics of small populations. J Anim Ecol 82:1227–1239. doi: 10.1111/1365-2656.12109 CrossRefPubMedGoogle Scholar
  42. Mugabo M, Perret S, Decenciere B et al (2015) Density-dependent immunity and parasitism risk in experimental populations of lizards naturally infested by ixodid ticks. Ecology 96:450–460. doi: 10.1890/14-0524.1 CrossRefPubMedGoogle Scholar
  43. Navarro-Castilla A, Barja I, Olea PP et al (2014) Are degraded habitats from agricultural crops associated with elevated faecal glucocorticoids in a wild population of common vole (Microtus arvalis)? Mamm Biol 79:36–43. doi: 10.1016/j.mambio.2013.08.004 CrossRefGoogle Scholar
  44. Nelson RJ (1994) An introduction to behavioural endocrinology. Sinauer, SunderlandGoogle Scholar
  45. Peckett AJ, Wright DC, Riddell MC (2011) The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60:1500–1510. doi: 10.1016/j.metabol.2011.06.012 CrossRefPubMedGoogle Scholar
  46. Penalver-Alcazar M, Aragon P, Breedveld MC, Fitze PS (2016) Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local processes, and model transferability among populations. Ecol Evol 6:3594–3607CrossRefGoogle Scholar
  47. R Core Team (2014) R: a language and environment for statistical computing.
  48. Romero LM, Wikelski M (2002) Severe effects of low-level oil contamination on wildlife predicted by the corticosterone-stress response: preliminary data and a research agenda. Spill Sci Technol Bull 7:309–313. doi: 10.1016/s1353-2561(02)00067-1 CrossRefGoogle Scholar
  49. Romero LM, Wikelski M (2010) Stress physiology as a predictor of survival in Galapagos marine iguanas. Proc Biol Sci 277:3157–3162. doi: 10.1098/rspb.2010.0678 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389. doi: 10.1016/j.yhbeh.2008.12.009 CrossRefPubMedGoogle Scholar
  51. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89. doi: 10.1210/er.21.1.55 PubMedGoogle Scholar
  52. Shao C, Chen J, Li L, Zhang L (2012) Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: an energy perspective. J Arid Environ 82:1–10. doi: 10.1016/j.jaridenv.2012.02.019 CrossRefGoogle Scholar
  53. Sorci G, Clobert J, Belichon S (1996) Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. J Anim Ecol 65:781–790. doi: 10.2307/5676 CrossRefGoogle Scholar
  54. Tarjuelo R, Barja I, Morales MB et al (2015) Effects of human activity on physiological and behavioral responses of an endangered steppe bird. Behav Ecol 26:828–838. doi: 10.1093/beheco/arv016 CrossRefGoogle Scholar
  55. Uchida K, Ushimaru A (2014) Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol Monogr 84:637–658. doi: 10.1890/13-2170.1 CrossRefGoogle Scholar
  56. Vercken E, de Fraipont M, Dufty AM, Clobert J (2007) Mother’s timing and duration of corticosterone exposure modulate offspring size and natal dispersal in the common lizard (Lacerta vivipara). Horm Behav 51:379–386. doi: 10.1016/j.yhbeh.2006.12.006 CrossRefPubMedGoogle Scholar
  57. Vinkler M, Bainova H, Albrecht T (2010) Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol 24:1081–1086. doi: 10.1111/j.1365-2435.2010.01711.x CrossRefGoogle Scholar
  58. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46. doi: 10.1016/j.tree.2005.10.018 CrossRefPubMedGoogle Scholar
  59. Wikelski M, Wong V, Chevalier B et al (2002) Marine iguanas die from trace oil pollution. Nature 417:607–608. doi: 10.1038/417607a CrossRefPubMedGoogle Scholar
  60. Wingfield JC (2008) Comparative endocrinology, environment and global change. Gen Comp Endocrinol 157:207–216. doi: 10.1016/j.ygcen.2008.04.017 CrossRefPubMedGoogle Scholar
  61. Wingfield JC (2013a) The comparative biology of environmental stress: behavioural endocrinology and variation in ability to cope with novel, changing environments. Anim Behav 85:1127–1133. doi: 10.1016/j.anbehav.2013.02.018 CrossRefGoogle Scholar
  62. Wingfield JC (2013b) Ecological processes and the ecology of stress: the impacts of abiotic environmental factors. Funct Ecol 27:37–44. doi: 10.1111/1365-2435.12039 CrossRefGoogle Scholar
  63. Wingfield JC, Kelley JP, Angelier F (2011) What are extreme environmental conditions and how do organisms cope with them? Curr Zool 57:363–374. doi: 10.1093/czoolo/57.3.363 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut d’écologie et des sciences de l’environnement (IEES)Sorbonne Universités, UPMC Université Paris 6, CNRS, IRD, INRAParisFrance
  2. 2.Département de biologieEcole normale supérieure, PSL Research University, CNRS, UMS, 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance)Saint-Pierre-lès-NemoursFrance
  3. 3.ESPE de ParisUniversité Sorbonne Paris IVParisFrance

Personalised recommendations