Skip to main content

Advertisement

Log in

Trait assembly in grasslands depends on habitat history and spatial scale

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

During the past century, grasslands in Europe have undergone marked changes in land-use, leading to a decline in plant diversity both at local and regional scales, thus possibly also affecting the mechanisms of species sorting into local communities. We studied plant species assembly in grasslands with differing habitat history and hypothesised that trait divergence prevails in historical grasslands due to niche differentiation and trait convergence prevails in more dynamic grasslands due to competitive exclusion and dispersal limitation. We tested these hypotheses in 35 grassland complexes in Estonia, containing neighbouring grassland habitats with different land-use histories: continuously managed open historical grassland, currently overgrown former grassland and young developing grassland. We assessed species assembly patterns in each grassland type for finer scale—a 2 × 2 m plot scale from a local community pool and for broader scale—a local community from the habitat species pool for that grassland stage and observed changes in trait means at finer scale. We found that grasslands with long management history are assembled differently from former grasslands or young developing grasslands. In historical grasslands, divergence or random patterns prevailed at finer scale species assembly while in former or developing grasslands, mostly convergence patterns prevailed. With increasing scale convergence patterns become more prevalent in all grassland types. We conclude that land-use history is an important factor to consider when assessing grassland functional trait assembly, particularly at small scales. Understanding the mechanisms behind species assembly and their relationship with land-use history is vital for habitat conservation and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aavik T, Jõgar Ü, Liira J, Tulva I, Zobel M (2008) Plant diversity in a calcareous wooded meadow—the significance of management continuity. J Veg Sci 19:475–484. doi:10.3170/2008-8-18380

    Article  Google Scholar 

  • Adler PB, Ellner SP, Levine JM (2010) Coexistence of perennial plants: an embarrassment of niches. Ecol Lett 13:1019–1029. doi:10.1111/j.1461-0248.2010.01496.x

    PubMed  Google Scholar 

  • Batalha M, Pipenbaher N, Bakan B, Kaligarič M, Škornik S (2015) Assessing community assembly along a successional gradient in the North Adriatic Karst with functional and phylogenetic distances. Oecologia 178:1205–1214. doi:10.1007/s00442-015-3295-5

    Article  PubMed  Google Scholar 

  • Bennett JA, Lamb EG, Hall JC, Cardinal-McTeague WM, Cahill JF (2013) Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecol Lett 16:1168–1176. doi:10.1111/ele.12153

    Article  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Cornelissen J et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi:10.1890/0012-9658(2006)87[1465:attfhf]2.0.co;2

  • de Bello F et al (2012) Functional species pool framework to test for biotic effects on community assembly. Ecology 93:2263–2273. doi:10.1890/11-1394.1

    Article  PubMed  Google Scholar 

  • de Bello F et al (2013) Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J Ecol 101:1237–1244. doi:10.1111/1365-2745.12139

    Article  Google Scholar 

  • de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M (2016) Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180:933–940. doi:10.1007/s00442-016-3546-0

    Article  PubMed  Google Scholar 

  • Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122. doi:10.2307/3237229

    Article  Google Scholar 

  • Eriksson O (1996) Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations. Oikos 77:248–258. doi:10.2307/3546063

    Article  Google Scholar 

  • Eriksson Å, Eriksson O (1997) Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank. Nord J Bot 17:469–482. doi:10.1111/j.1756-1051.1997.tb00344.x

    Article  Google Scholar 

  • Eriksson MOG, Rosén E (2008) Management of Natura 2000 habitats 2680 *Nordic alvar and precambrian calcareous flatrocks, Technical Report 2008 16/24, European Commission

  • Garnier E et al (2007) Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985. doi:10.1093/aob/mcl215

    Article  PubMed  Google Scholar 

  • Gazol A et al (2012) Landscape-and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography 35:944–951. doi:10.1111/j.1600-0587.2012.07627.x

    Article  Google Scholar 

  • Götzenberger L et al (2012) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol Rev 87:111–127. doi:10.1111/j.1469-185X.2011.00187.x

    Article  PubMed  Google Scholar 

  • Grime JP (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. J Veg Sci 17:255–260. doi:10.1111/j.1654-1103.2006.tb02444.x

    Article  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi:10.1111/j.1461-0248.2005.00841.x

    PubMed  Google Scholar 

  • Helm A, Oja T, Saar L, Takkis K, Talve T, Pärtel M (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336. doi:10.1111/j.1365-2745.2009.01572.x

    Article  Google Scholar 

  • Kasari L, Gazol A, Kalwij JM, Helm A (2013) Low shrub cover in alvar grasslands increases small-scale diversity by promoting the occurrence of generalist species. Tuexenia 33:293–308

    Google Scholar 

  • Kembel SW et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kleyer M et al (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274. doi:10.1111/j.1654-1103.2003.tb02188.x

    Article  Google Scholar 

  • Klotz S, Kühn I, W. Durka H (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bonn: Bundesamt für Naturschutz

  • Krause B, Culmsee H (2013) The significance of habitat continuity and current management on the compositional and functional diversity of grasslands in the uplands of Lower Saxony, Germany. Flora 208:299–311

    Article  Google Scholar 

  • Laasimer L (1965) Eesti NSV Taimkate. Eesti NSV Teaduste Akadeemia Zooloogia ja Botaanika Instituut. Valgus, Tallinn

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Laliberté E, Norton DA, Scott D (2013) Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci 24:834–842. doi:10.1111/jvs.12044

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R Package Version 1.0-12

  • Lhotsky B et al (2016) Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J Ecol 104:507–517. doi:10.1111/1365-2745.12532

    Article  Google Scholar 

  • Lindborg R (2007) Evaluating the distribution of plant life-history traits in relation to current and historical landscape configurations. J Ecol 95:555–564. doi:10.1111/j.1365-2745.2007.01232.x

    Article  Google Scholar 

  • Lindborg R et al (2012) Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography 35:356–363. doi:10.1111/j.1600-0587.2011.07286.x

    Article  Google Scholar 

  • MacArthur RH, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Article  Google Scholar 

  • Marini L et al (2012) Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Divers Distrib 18:898–908. doi:10.1111/j.1472-4642.2012.00893.x

    Article  Google Scholar 

  • Marteinsdóttir B, Eriksson O (2014a) Plant community assembly in semi-natural grasslands and ex-arable fields: a trait-based approach. J Veg Sci 25:77–87. doi:10.1111/jvs.12058

    Article  Google Scholar 

  • Marteinsdóttir B, Eriksson O (2014b) Trait-based filtering from the regional species pool into local grassland communities. J Plant Ecol 7:347–355. doi:10.1093/jpe/rtt032

    Article  Google Scholar 

  • Maurer K, Durka W, Stöcklin J (2003) Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic Appl Ecol 4:307–316. doi:10.1078/1439-1791-00162

    Article  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093. doi:10.1111/j.1461-0248.2010.01509.x

    Article  PubMed  Google Scholar 

  • Mayfield M, Bonser S, Morgan J, Aubin I, McNamara S, Vesk P (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19:423–431. doi:10.1111/j.1466-8238.2010.00532.x

    Google Scholar 

  • Mudrák O et al (2016) Fine-scale coexistence patterns along a productivity gradient in wet meadows: shifts from trait convergence to divergence. Ecography 39:338–348. doi:10.1111/ecog.01723

    Article  Google Scholar 

  • Neuenkamp L, Lewis RJ, Koorem K, Zobel K, Zobel M (2016) Changes in dispersal and light capturing traits explain post-abandonment community change in semi-natural grasslands. J Veg Sci 27:1222–1232. doi:10.1111/jvs.12449

    Article  Google Scholar 

  • Öster M, Ask K, Cousins SA, Eriksson O (2009) Dispersal and establishment limitation reduces the potential for successful restoration of semi-natural grassland communities on former arable fields. J Appl Ecol 46:1266–1274. doi:10.1111/j.1365-2664.2009.01721.x

    Google Scholar 

  • Pärtel M, Helm A (2007) Invasion of woody species into temperate grasslands: relationship with abiotic and biotic soil resource heterogeneity. J Veg Sci 18:63–70. doi:10.1111/j.1654-1103.2007.tb02516.x

    Article  Google Scholar 

  • Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc Ecol 14:187–196. doi:10.1023/a:1008040114832

    Article  Google Scholar 

  • Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783. doi:10.1007/s00442-011-2142-6

    Article  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 18 Jan 2015

  • Reitalu T et al (2014) Determinants of fine-scale plant diversity in dry calcareous grasslands within the Baltic Sea region. Agric Ecosyst Environ 182:59–68. doi:10.1016/j.agee.2012.11.005

    Article  Google Scholar 

  • Riibak K et al (2015) Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography 38:713–721. doi:10.1111/ecog.01312

    Article  Google Scholar 

  • Royal Botanic Gardens Kew (2015) Seed Information Database (SID). Version 7.1. http://data.kew.org/sid/. Accessed 14 Mar 2015

  • Saar L, Takkis K, Pärtel M, Helm A (2012) Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers Distrib 18:808–817. doi:10.1111/j.1472-4642.2012.00885.x

    Article  Google Scholar 

  • Schleuning M, Niggemann M, Becker U, Matthies D (2009) Negative effects of habitat degradation and fragmentation on the declining grassland plant Trifolium montanum. Basic Appl Ecol 10:61–69

    Article  Google Scholar 

  • Stubbs WJ, Wilson BJ (2004) Evidence for limiting similarity in a sand dune community. J Ecol 92:557–567. doi:10.1111/j.0022-0477.2004.00898.x

    Article  Google Scholar 

  • Thompson K, Hillier SH, Grime JP, Bossard CC, Band SR (1996) A functional analysis of a limestone grassland community. J Veg Sci 7:371–380. doi:10.2307/3236280

    Article  Google Scholar 

  • Thompson K, Petchey OL, Askew AP, Dunnett NP, Beckerman AP, Willis AJ (2010) Little evidence for limiting similarity in a long-term study of a roadside plant community. J Ecol 98:480–487. doi:10.1111/j.1365-2745.2009.01610.x

    Article  Google Scholar 

  • Török P, Helm A (2017) Ecological theory provides strong support for habitat restoration. Biol Conserv 206:85–91. doi:10.1016/j.biocon.2016.12.024

    Article  Google Scholar 

  • Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:956–977. doi:10.1890/06-0924

    Article  Google Scholar 

  • Vandewalle M et al (2014) Functional responses of plant communities to management, landscape and historical factors in semi-natural grasslands. J Veg Sci 25:750–759. doi:10.1111/jvs.12126

    Article  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. doi:10.1086/652373

    Article  PubMed  Google Scholar 

  • Weiher E, Keddy PA (1995) The assembly of experimental wetland plant communities. Oikos 73:323–335. doi:10.2307/3545956

    Article  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jan Lepš for support in data analysis and Dr. Krista Takkis and Dr. Jonathan Bennett for helpful comments and language correction. This work was funded by the Estonian Research Council (Grant Number 9223), Estonian Ministry of Education and Research (Grant Number IUT 20-29), DoRa programme, Czech Science Foundation (Grant Number GA16-15012S) and the European Union through the European Regional Development Fund (Centre of Excellence EcolChange).

Author contribution statement

AH, FB, LS and MP designed the study. AH conducted the field sampling. LS and FB analysed the data. LS wrote the manuscript and all authors contributed substantially to revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liina Saar.

Additional information

Communicated by William Stanley Harpole.

This study contributes to the growing fields of trait-based and restoration ecology by analyzing what governs species assembly patterns in species-rich grasslands. We demonstrated that grasslands with regular and long management history are assembled differently from abandoned grasslands and young developing grasslands, but these differences become evident only at finer scales. Understanding the mechanisms that control species coexistence is essential for designing biodiversity conservation and restoration schemes and mitigating the effects of global change.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saar, L., de Bello, F., Pärtel, M. et al. Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia 184, 1–12 (2017). https://doi.org/10.1007/s00442-017-3812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3812-9

Keywords

Navigation