Skip to main content

Micro-climatic controls and warming effects on flowering time in alpine snowbeds

Abstract

Alpine snowbed communities are among the habitats most threatened by climate change. The warmer temperature predicted, coupled with advanced snowmelt time, will influence flowering phenology, which is a key process in species adaptation to changing environmental conditions and plant population dynamics. However, we know little about the effects of changing micro-climate on flowering time in snowbeds and the mechanisms underlying such phenological responses. The flowering phenology of species inhabiting alpine snowbeds was assessed with weekly observations over five growing seasons. We analysed flowering time in relation to micro-climatic variation in snowmelt date, soil and air temperature, and experimental warming during the snow-free period. This approach allowed us to test hypotheses concerning the processes driving flowering phenology. The plants were finely tuned with inter-annual and intra-seasonal variations of their micro-climate, but species did not track the same micro-climatic feature to flower. At the growing-season time-scale, the air surrounding the plants was the most common trigger of the blooming period. However, at the annual time-scale, the snowmelt date was the main controlling factor for flowering time, even in warmer climate. Moreover, spatial patterns of the snowmelt influenced the developmental rate of the species because in later snowmelt sites the plants needed a lower level of heat accumulation to enter anthesis. Phenological responses to experimental warming differed among species, were proportional to the pre-flowering time-span of plants, and did not show consistent trends of change over time. Finally, warmer temperature produced an overall increase of flowering synchrony both within and among plant species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aeschimann D, Lauber K, Moser DM, Theurillat GP (2004) Flora alpina. Zanichelli, Bologna

    Google Scholar 

  2. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trend Plant Sci 8:343–351. doi:10.1016/S1360-1385(03)00136-5

    CAS  Article  Google Scholar 

  3. Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 76:125–140. doi:10.1007/s00704-003-0016-5

    Article  Google Scholar 

  4. Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438. doi:10.1146/annurev.es.02.110171.002201

    Article  Google Scholar 

  5. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    CAS  Article  PubMed  Google Scholar 

  6. Carbognani M, Petraglia A, Tomaselli M (2012) Influence of snowmelt time on species richness, density and production in a late snowbed community. Acta Oecol 43:113–120. doi:10.1016/j.actao.2012.06.003

    Article  Google Scholar 

  7. Carbognani M, Petraglia A, Tomaselli M (2014a) Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant Soil 376:277–290. doi:10.1007/s11104-013-1982-8

    CAS  Article  Google Scholar 

  8. Carbognani M, Tomaselli M, Petraglia A (2014b) Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alp Bot 124:105–113. doi:10.1007/s00035-014-0135-x

    Article  Google Scholar 

  9. Clarke HL (1893) The philosophy of flower season. Am Nat 27:769–781. doi:10.1086/275791

    Article  Google Scholar 

  10. Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecology 93:1765–1771. doi:10.1890/11-1912.1

    Article  PubMed  Google Scholar 

  11. Crawley MJ (2013) The R book. Wiley, Chichester

    Google Scholar 

  12. Dietrich L, Körner C (2014) Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alp Bot 124:27–35. doi:10.1007/s00035-014-0123-1

    Article  Google Scholar 

  13. Domènech M, Komac B, Peñuelas J, Conesa JA (2014) Site-specific factors influence the richness and phenology of snowbed plants in the Pyrenees. Plant Biosyst. doi:10.1080/11263504.2014.990941 (online)

    Google Scholar 

  14. Fægri K, van der Pijl L (1979) Pollination in angiosperms. In: Fægri K, van der Pijl L (eds) The principles of pollination ecology. Pergamon Press, Oxford, pp 13–33

    Chapter  Google Scholar 

  15. Forrest J, Inouye DW, Thomson JD (2010) Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns? Ecology 41:431–440. doi:10.1890/09-0099.1

    Article  Google Scholar 

  16. García-Camacho R, Totland Ø (2009) Pollen limitation in the alpine: a meta-analysis. Arct Antarct Alp Res 41:103–111. doi:10.1657/1523-0430-41.1.103

    Article  Google Scholar 

  17. Hedhly A, Hormaza JI, Herrero M (2008) Global warming and sexual plant reproduction. Trend Plant Sci 14:30–36. doi:10.1016/j.tplants.2008.11.001

    Article  Google Scholar 

  18. Hiller B, Nuebel A, Broll G, Holtmeier F-K (2005) Snowbeds on silicate rocks in the Upper Engadine (Central Alps, Switzerland)—pedogenesis and interactions among soil, vegetation, and snow cover. Arct Antarct Alp Res 37:465–476. doi:10.1657/1523-0430(2005)037%5B0465:SOSRIT%5D2.0.CO;2

    Article  Google Scholar 

  19. Holway JG, Ward RT (1965) Phenology of alpine plants in Northern Colorado. Ecology 46:73–83. doi:10.2307/1935259

    Article  Google Scholar 

  20. Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC (2013) Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat Clim Change 3:759–763. doi:10.1038/nclimate1909

    Article  Google Scholar 

  21. Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252. doi:10.1111/j.1365-2435.2009.01645.x

    Article  Google Scholar 

  22. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362. doi:10.1890/06-2128.1

    Article  PubMed  Google Scholar 

  23. Inouye DW, Wielgolaski FE (2013) Phenology at high altitudes. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 249–272

    Chapter  Google Scholar 

  24. Keller F, Körner C (2003) The role of photoperiodism in alpine plant development. Arct Antarct Alp Res 35:361–368. doi:10.1657/1523-0430(2003)035%5B0361:TROPIA%5D2.0.CO;2

    Article  Google Scholar 

  25. King AW, Gunderson CA, Post WM, Weston DJ, Wullschleger SD (2006) Plant respiration in a warmer world. Science 312:536–537. doi:10.1126/science.1114166

    CAS  Article  PubMed  Google Scholar 

  26. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  27. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112:189–215. doi:10.1007/s10584-011-0195-5

    Article  Google Scholar 

  28. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  29. Larcher W (2003) Physiological plant ecology. Springer, Berlin

    Book  Google Scholar 

  30. Lluent A, Anadon-Rosell A, Ninot JM, Grau O, Carillo E (2013) Phenology and seed setting success of snowbed plant species in contrasting snowmelt regimes in the Central Pyrenees. Flora 208:220–231. doi:10.1016/j.flora.2013.03.004

    Article  Google Scholar 

  31. Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parson AN, Svoboda J, Virginia RA (1997) Open-top design for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32. doi:10.1111/j.1365-2486.1997.gcb136.x

    Article  Google Scholar 

  32. Marsham R (1789) Indications of spring, observed by Robert Marsham, Esduire, F. R. S. of Stratton in Norfolk. Latitude 52°45′. Philos Trans R Soc Lond 79:154–156

    Article  Google Scholar 

  33. Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J Ecol 96:1289–1296. doi:10.1111/j.1365-2745.2008.01436.x

    Article  Google Scholar 

  34. Moeller DA, Geber MA (2005) Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance. Evolution 59:786–799. doi:10.1554/04-656

    PubMed  Google Scholar 

  35. Molau U, Nordenhäll U, Eriksen B (2005) Onset of flowering and climate variability in an alpine landscape: a 10-year study from Swedish Lapland. Am J Bot 92:422–431. doi:10.3732/ajb.92.3.422

    Article  PubMed  Google Scholar 

  36. Mountain Research Initiative EDW Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. doi:10.1038/nclimate2563

    Article  Google Scholar 

  37. Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628. doi:10.1111/j.1469-8137.2008.02478.x

    CAS  Article  PubMed  Google Scholar 

  38. Petraglia A, Tomaselli M, Carbognani M (2013) Effects of nutrient amendments on modular growth, flowering effort and reproduction of snowbed plants. Plant Ecol Divers 6:475–486. doi:10.1080/17550874.2013.795628

    Article  Google Scholar 

  39. Petraglia A, Tomaselli M, Mondoni A, Brancaleoni L, Carbognani M (2014a) Effects of nitrogen and phosphorus on growth and flowering phenology of the snowbed forb Gnaphalium supinum L. Flora 209:271–278. doi:10.1016/j.flora.2014.03.005

    Article  Google Scholar 

  40. Petraglia A, Tomaselli M, Petit Bon M, Delnevo N, Chiari G, Carbognani M (2014b) Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol 215:759–768. doi:10.1007/s11258-014-0368-1

    Article  Google Scholar 

  41. Primack RB (1980) Variation in the phenology of natural populations of montane shrubs in New Zealand. J Ecol 68:849–862. doi:10.2307/2259460

    Article  Google Scholar 

  42. Pyke GH, Thomson JD, Inouye DW, Miller TJ (2016) Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7:e01267. doi:10.1002/ecs2.1267

    Article  Google Scholar 

  43. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  44. Sandvik SM, Odland A (2014) Changes in alpine snowbed-wetland vegetation over three decades in northern Norway. Nord J Bot 32:377–384. doi:10.1111/j.1756-1051.2013.00249.x

    Article  Google Scholar 

  45. Sandvik SM, Totland Ø (2000) Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 7:201–213

    Google Scholar 

  46. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416. doi:10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  47. Schwartz MD (2013) Introduction. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 1–5

    Chapter  Google Scholar 

  48. Sokal RR, Rohlf FJ (1995) Biometry. Freeman, New York

    Google Scholar 

  49. Tomaselli M (1991) The snow-bed vegetation in the Northern Apennines. Vegetatio 94:177–189. doi:10.1007/BF00032630

    Article  Google Scholar 

  50. Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 133:168–175. doi:10.1007/s00442-002-1028-z

    Article  Google Scholar 

  51. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank the Stelvio National Park for research authorization and facilities. Sincere thanks are due to Alice, Dimitri, Giorgio, Marta, Matteo, Nicola, Tommaso and Veronica for their help and company during the long fieldwork days (sometimes exceeding 24 h), often spent under harsh weather conditions (at least for human beings). We also thank Anila Ruth Scott-Monkhouse for proof reading, and the Handling Editor A. Worley and two anonymous reviewers for their comments on the manuscript.

Author contribution statement

MC and AP conceived and designed the study. All the authors performed the field and laboratory activity. MC analysed the data and wrote the manuscript; other authors provided editorial advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele Carbognani.

Additional information

Communicated by Anne Worley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 425 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carbognani, M., Bernareggi, G., Perucco, F. et al. Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182, 573–585 (2016). https://doi.org/10.1007/s00442-016-3669-3

Download citation

Keywords

  • Environmental cues
  • Phenology
  • Snowmelt
  • Synchronization
  • Temperature perception