Skip to main content

Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird

Abstract

Patterns of connectivity between breeding and wintering grounds can have important implications for individual fitness and population dynamics. Using light-level geolocators and stable hydrogen isotopes (δ2H) in feathers, we evaluated differential migration of Savannah sparrows (Passerculus sandwichensis) breeding on Kent Island in the Bay of Fundy, New Brunswick, Canada in relation to sex, age, and body size. Based on geolocators recovered from 38 individuals between 2012 and 2014, the winter distribution was centered in North Carolina (median latitude 34°, range 26°–41°), with males overwintering, on average, approximately 275 km further north than females. Based on analyses of tail feather samples collected from 106 individuals from the same population between 2008 and 2012, males and adults had more negative δ2H values than females and juveniles, respectively, providing additional evidence that males wintered north of females and that adults wintered north of juveniles. Winter latitude and δ2H values within each sex were not found to be related to body size. From geolocator data, males returned to the breeding grounds, on average, 14 days earlier than females. For males, there was some evidence that arrival date on the breeding grounds was negatively correlated with winter latitude and that individuals which arrived earlier tended to breed earlier. Thus, benefits for males of early arrival on the breeding grounds may have contributed to their wintering farther north than females. Social dominance may also have contributed to age and sex differences in winter latitude, whereby dominant males and adults forced subordinate females and juveniles further south.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aebischer A, Perrin N, Krieg M, Studer J, Meyer DR (1996) The role of territory choice, mate choice and arrival date on breeding success in the Savi’s warbler Locustella luscinioides. J Avian Biol 27:143–152. doi:10.2307/3677143

    Article  Google Scholar 

  2. Bensch S, Hasselquist D (1991) Territory infidelity in the polygynous great reed warbler Acrocephalus arundinaceus: the effect of variation in territory attractiveness. J Anim Ecol 60:857–871. doi:10.2307/5418

    Article  Google Scholar 

  3. Betini GS, Fitzpatrick MJ, Norris DR (2015) Experimental evidence for the effect of habitat loss on the dynamics of migratory networks. Ecol Lett. doi:10.1111/ele.12432

    PubMed  Google Scholar 

  4. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348. doi:10.1007/s00442-004-1813-y

    Article  PubMed  Google Scholar 

  5. Boyle WA, Guglielmo CG, Hobson KA, Norris DR (2011) Lekking birds in a tropical forest forego sex for migration. Biol Lett 7:661–663. doi:10.1098/rsbl.2011.0115

    Article  PubMed  PubMed Central  Google Scholar 

  6. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  7. Calvert AM, Walde SJ, Taylor PD (2009) Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv Ecol 4:5

    Google Scholar 

  8. Catry P, Campos A, Almada V, Cresswell W (2004) Winter segregation of migrant European robins Erithacus rubecula in relation to sex, age and size. J Avian Biol 35:204–209. doi:10.1111/j.0908-8857.2004.03266.x

    Article  Google Scholar 

  9. Dale CA, Leonard ML (2011) Reproductive consequences of migration decisions by Ipswich sparrows (Passerculus sandwichensis princeps). Can J Zool 89:100–108. doi:10.1139/Z10-098

    Article  Google Scholar 

  10. Dolbeer RA (1982) Migration patterns for age and sex classes of blackbirds and starlings. J Field Ornithol 53:28–46

    Google Scholar 

  11. Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar Res Spec Issue 58:210–226

    Google Scholar 

  12. Francis CM, Cooke F (1986) Differential timing of spring migration in wood warblers (Parulinae). Auk 103:548–556

    Google Scholar 

  13. Francis CM, Cooke CF (1990) Differential timing of spring migration in rose-breasted grosbeaks. J Field Ornithol 61:404–412

    Google Scholar 

  14. Gauthreaux SA Jr (1978) The ecological significance of behavioral dominance. In: Bateson PPG, Klopfer PH (eds) Perspectives in ethology. Springer Verlag, Berlin Heidelberg New York, pp 17–54

    Google Scholar 

  15. Gow EA, Wiebe KL (2014) Males migrate farther than females in a differential migrant: an examination of the fasting endurance hypothesis. R Soc Open Sci 1:140346. doi:10.1098/rsos.140346

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals: carry-over effects in animal populations. J Anim Ecol 80:4–18. doi:10.1111/j.1365-2656.2010.01740.x

    Article  PubMed  Google Scholar 

  17. Hill RD, Braun MJ (2001) Geolocation by light level. In: Sibert JR, Nielsen JL (eds) Reviews: methods and technologies in fish biology and fisheries, vol 1. Springer SBM, Dordrecht, pp 315–330

    Google Scholar 

  18. Hobson KA, Wassenaar LI (1997) Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109:142–148. doi:10.1007/s004420050068

    Article  Google Scholar 

  19. Holberton RL, Able KP (2000) Differential migration and an endocrine response to stress in wintering dark-eyed juncos (Junco hyemalis). Proc R Soc B Biol Sci 267:1889–1896. doi:10.1098/rspb.2000.1226

    CAS  Article  Google Scholar 

  20. Ketterson ED, Nolan V Jr (1976) Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57:679–693. doi:10.2307/1936182

    Article  Google Scholar 

  21. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo K-M, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184. doi:10.1111/1365-2656.12135

    Article  PubMed  Google Scholar 

  22. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950. doi:10.1046/j.1365-2656.1999.00343.x

    Article  Google Scholar 

  23. Lack D (1954) The natural regulation of animal numbers. Oxford University Press, London

    Google Scholar 

  24. Langin KM, Reudink MW, Marra PP, Norris DR, Kyser TK, Ratcliffe LM (2007) Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographic assignment. Oecologia 152:449–457. doi:10.1007/s00442-007-0669-3

    Article  PubMed  Google Scholar 

  25. Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059. doi:10.1111/j.2041-210X.2012.00248.x

    Article  Google Scholar 

  26. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors—accuracy of geolocation by light. Methods Ecol Evol 3:603–612. doi:10.1111/j.2041-210X.2012.00185.x

    Article  Google Scholar 

  27. Lok T, Overdijk O, Piersma T (2015) The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol Lett 11:20140944. doi:10.1098/rsbl.2014.0944

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American redstarts Setophaga ruticilla. J Avian Biol 27:164–170

  29. Marra PP (2000) The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behav Ecol 11:299–308. doi:10.1093/beheco/11.3.299

    Article  Google Scholar 

  30. Marra PP, Norris DR, Haig SM, Webster M, Royle JA (2006) Migratory connectivity. In: Crooks KR, Sanjayan M (eds) Connectivity conservation. Cambridge University Press, New York, pp 157–183

    Chapter  Google Scholar 

  31. Mazerolle DF, Hobson KA (2007) Patterns of differential migration in white-throated sparrows evaluated with isotopic measurements of feathers. Can J Zool 85:413–420. doi:10.1139/Z07-010

    Article  Google Scholar 

  32. Mitchell GW, Newman AEM, Wikelski M, Norris DR (2012) Timing of breeding carries over to influence migratory departure in a songbird: an automated radiotracking study. J Anim Ecol 81:1024–1033. doi:10.1111/j.1365-2656.2012.01978.x

    Article  PubMed  Google Scholar 

  33. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673. doi:10.1046/j.1461-0248.2001.00265.x

    Article  Google Scholar 

  34. Morbey YE, Coppack T, Pulido F (2012) Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J Ornithol 153:207–215. doi:10.1007/s10336-012-0854-y

    Article  Google Scholar 

  35. Myers JP (1981) A test of three hypotheses for latitudinal segregation of the sexes in wintering birds. Can J Zool 59:1527–1534. doi:10.1139/z81-207

    Article  Google Scholar 

  36. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605. doi:10.1111/j.1469-185X.2007.00027.x

    Article  PubMed  Google Scholar 

  37. Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B Biol Sci 271:59–64. doi:10.1098/rspb.2003.2569

    Article  Google Scholar 

  38. Pasinelli G, Schaub M, Häfliger G, Frey M, Jakober H, Müller M, Stauber W, Tryjanowski P, Zollinger J-L, Jenni L (2011) Impact of density and environmental factors on population fluctuations in a migratory passerine. J Anim Ecol 80:225–234. doi:10.1111/j.1365-2656.2010.01754.x

    Article  PubMed  Google Scholar 

  39. Pyle P (1997) Identification guide to North American birds. Slate Creek Press, Bolinas

    Google Scholar 

  40. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  41. Rising JD (1988) Geographic variation in sex ratios and body size in wintering flocks of Savannah sparrows (Passerculus sandwichensis). Wilson Bull 100:183–203

    Google Scholar 

  42. Rohwer S, Butler LK, Froehlich DR (2005) Ecology and demography of east–west differences in molt scheduling of Neotropical migrant passerines. In: Greenberg R, Marra PP (eds) Birds of two worlds: the ecology and evolution of migration. The John Hopkins University Press, Baltimore, pp 87–105

    Google Scholar 

  43. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042. doi:10.1126/science.288.5473.2040

    CAS  Article  PubMed  Google Scholar 

  44. Smith RJ, Moore FR (2004) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239. doi:10.1007/s00265-004-0855-9

    Article  Google Scholar 

  45. Studds CE, McFarland KP, Aubry Y, Rimmer CC, Hobson KA, Marra PP, Wassenaar LI (2012) Stable-hydrogen isotope measures of natal dispersal reflect observed population declines in a threatened migratory songbird. Divers Distrib 18:919–930. doi:10.1111/j.1472-4642.2012.00931.x

    Article  Google Scholar 

  46. Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896. doi:10.1126/science.1166664

    CAS  Article  PubMed  Google Scholar 

  47. Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3:280–283. doi:10.1098/rsbl.2007.0053

    Article  PubMed  PubMed Central  Google Scholar 

  48. Taylor CM, Norris DR (2010) Population dynamics in migratory networks. Theor Ecol 3:65–73. doi:10.1007/s12080-009-0054-4

    Article  Google Scholar 

  49. van Dijk JGB, Meissner W, Klaassen M (2014) Improving provenance studies in migratory birds when using feather hydrogen stable isotopes. J Avian Biol 45:103–108. doi:10.1111/j.1600-048X.2013.00232.x

    Article  Google Scholar 

  50. Velmala W, Helle S, Ahola MP, Klaassen M, Lehikoinen E, Rainio K, Sirkiä PM, Laaksonen T (2015) Natural selection for earlier male arrival to breeding grounds through direct and indirect effects in a migratory songbird. Ecol Evol 5:1205–1213. doi:10.1002/ece3.1423

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ Health Stud 39:211–217. doi:10.1080/1025601031000096781

    CAS  Article  PubMed  Google Scholar 

  52. Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds: unraveling migratory connectivity. Trends Ecol Evol 17:76–83. doi:10.1016/S0169-5347(01)02380-1

    Article  Google Scholar 

  53. Wheelwright NT, Mauck RA (1998) Philopatry, natal dispersal, and inbreeding avoidance in an island population of Savannah sparrows. Ecology 79:755–767

    Article  Google Scholar 

  54. Wheelwright NT, Rising JD (2008) Savannah sparrow—birds of North America. Available at: http://bna.birds.cornell.edu/bna/species/045/articles/introduction. Accessed 26 Mar 2014

  55. Wheelwright NT, Schultz CB, Hodum PJ (1992) Polygyny and male parental care in Savannah sparrows: effects on female fitness. Behav Ecol Sociobiol 31:279–289. doi:10.1007/BF00171683

    Article  Google Scholar 

  56. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Avian metabolism: costs of migration in free-flying songbirds. Nature 423:704. doi:10.1038/423704a

    CAS  Article  PubMed  Google Scholar 

  57. Williams H, Levin II, Norris DR, Newman AEM, Wheelwright NT (2013) Three decades of cultural evolution in Savannah sparrow songs. Anim Behav 85:213–223. doi:10.1016/j.anbehav.2012.10.028

    Article  Google Scholar 

  58. Willoughby EJ (1986) An unusual sequence of molts and plumages in Cassin’s and Bachman’s sparrows. Condor 88:461–472. doi:10.2307/1368272

    Article  Google Scholar 

  59. Wilson S, LaDeau SL, Tøttrup AP, Marra PP (2011) Range-wide effects of breeding-and nonbreeding-season climate on the abundance of a neotropical migrant songbird. Ecology 92:1789–1798. doi:10.1890/10-1757.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jesse Pakkala, Katherine Smith, Graham Sorenson, and Elizabeth Christiansen for assistance with fieldwork, as well as Damon and Janet Gannon, Mark Murray, and Russell Ingalls for logistical support at the Bowdoin Scientific Station on Kent Island. This represents Bowdoin Scientific Station contribution no. 255.

Author contribution statement

BKW, AEMN, SPT, BCD, NTW, and DRN conceived and designed the study. BKW, AEMN, SPT, BCD, GWM, NTW, and DRN conducted fieldwork. SPT and BCD prepared feathers for stable isotope analysis. KAH and LIW conducted stable isotope analyses. BKW conducted statistical analyses and wrote the manuscript; all authors provided editorial advice.

Funding

This study was funded by the Natural Sciences and Engineering Research Council (DRN), Canada Foundation for Innovation (DRN), University of Guelph (DRN, BKW), a Bowdoin Scientific Station Summer Fellowship (BCD, SPT), the Bowdoin College Roberts Fund (BCD), and a Bowdoin College Grua/O’Connell Research Award (SPT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bradley K. Woodworth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional and national guidelines for the care and use of animals were followed.

Additional information

Communicated by Toni Laaksonen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woodworth, B.K., Newman, A.E.M., Turbek, S.P. et al. Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. Oecologia 181, 413–422 (2016). https://doi.org/10.1007/s00442-015-3527-8

Download citation

Keywords

  • Carryover effects
  • Light-level geolocator
  • Protandry
  • Savannah sparrow
  • Stable isotopes