Skip to main content

Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach

Abstract

Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (R o) and decrease in generation time (G o). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. ACIA (2005) Arctic climate impact assessment-scientific report. Cambridge University Press, Cambridge

  2. Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23:481–506

    Article  Google Scholar 

  3. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of Ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  5. Byström P (2006) Recruitment pulses induce cannibalistic giants in Arctic char. J Anim Ecol 75:434–444

    PubMed  Article  Google Scholar 

  6. Byström P, Andersson J (2006) Size-dependent foraging capacities and intercohort competition in an ontogenetic omnivore (Arctic char). Oikos 110:523–536

    Article  Google Scholar 

  7. Byström P, Garcίa-Berthou E (1999) Density dependent growth and size specific competitive interactions in young fish. Oikos 86:217–232

    Article  Google Scholar 

  8. Byström P, Andersson J, Persson L, De Roos AM (2004) Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char. Oikos 104:109–121

    Article  Google Scholar 

  9. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  10. Claessen D, Van Oss C, De Roos AM, Persson L (2002) The impact of size-dependent predation on population dynamics and individual life history. Ecology 83:1660–1675

    Article  Google Scholar 

  11. Claessen D, De Roos AM, Persson L (2003) Population dynamic theory of size-dependent cannibalism. Proc R Soc Lond 271:333–340

    Article  Google Scholar 

  12. Cooch E, White G (2008) Program MARK: a gentle introduction, 6th edn. Available online at http://www.phidot.org/software/mark/docs/books/

  13. Cummins KW, Wuycheck JC (1971) Calorific equivalents for investigations in ecological energetic. Mitt Int Verein Theor Ang Limnol 18:1–158

    Google Scholar 

  14. Cunjak RA, Prowse TD, Parrish DL (1998) Atlantic salmon (Salmo salar) in winter: “the season of parr discontent”? Can J Fish Aquat Sci 55:161–180

    Article  Google Scholar 

  15. Ebenman B, Perrson L (1988) Size-structured populations: ecology and evolution. Springer, Berlin

    Book  Google Scholar 

  16. Finstad AG, Ugedal O, Forseth T, Naesje TF (2004) Energy-related juvenile winter mortality in a northern population of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 61:2358–2368

    Article  Google Scholar 

  17. Finstad AG, Ugedal O, Berg OK (2006) Growing large in a low grade environment: size dependent foraging gain and niche sshifts to cannibalism in Arctic char. Oikos 112:73–82

    Article  Google Scholar 

  18. Fraley JJ, Shepard BB (1989) Life history, ecology and population status of migratory bull trout (Salvelinus confluentus) in the Flathead Lake and river system, Montana. Northw Sci 63:133–143

    Google Scholar 

  19. Gillet C (1991) Egg production in an Arctic char (Salvelinus alpinus L.) brood stock: effects of temperature on the timing of spawning and the quality of eggs. Aquat Liv Res 4:109–116

    Article  Google Scholar 

  20. Griffths D (1994) The size structure of lacustrine Arctic char (Pisces: salmonidae) populations. Biol J Linn Soc 51:337–357

    Article  Google Scholar 

  21. Guénard GG, Boisclair D, Ugedal O, Forseth T, Jonsson B (2008) Comparison between activity estimates obtained using bioenergetic and behavioral analyses. Can J Fish Aquat Sci 65:1705–1720

    Article  Google Scholar 

  22. Guénard G, Boisclair D, Ugedal O, Forseth T, Jonsson B, Fleming IA (2010) Experimental assessment of the bioenergetic and behavioural differences between two morphologically distinct populations of Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 67:580–595

    Article  Google Scholar 

  23. Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  24. Hanson PC, Johnson TB, Schindler DE, Kitchell JF (1997) Fish bioenergetics 3.0 for Windows. Technical report WISCU-T-97-001. University of Wisconsin Sea Grant Institute, Madison

  25. Hartman KJ, Kitchell JF (2008) Bioenergetics modeling progress since the 1992 symposium. Trans Am Fish Soc 137:216–223

    Article  Google Scholar 

  26. Helland IP, Finstad AG, Forseth T, Hesthagen T, Ugedal O (2011) Ice-cover effects on competitive interactions between two fish species. J Anim Ecol 80:539–547

    PubMed  Article  Google Scholar 

  27. Hershey AE, Gettel GM, McDonald ME, Miller MC, Mooers H, O’Brien WJ, Pastor J, Richards C, Schuldt JA (1999) A geomorphic–trophic model for landscape control of arctic lake food webs. Bioscience 49:887–897

    Article  Google Scholar 

  28. Hershey AE, Beaty S, Fortino K, Kelly S, Keyse M, Luecke C, O’Brien WJ, Whalen SC (2006a) Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production. Limnol Oceon 51:177–188

    Article  Google Scholar 

  29. Hershey AE, Beaty S, Fortino K, Keyse M, Mou PP, O’Brien WJ, Ulseth AJ, Gettel GA, Lienesch PW, Luecke C, McDonald ME, Mayer CH, Miller MC, Richards C, Shuldt JA (2006b) Effect of landscape factors on fish distribution in arctic Alaskan lakes. Freshwater Biol 51:355

    Article  Google Scholar 

  30. Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an arctic freshwater system. Polar Res 18:207–214

    Article  Google Scholar 

  31. Hurst TP (2007) Review paper: causes and consequences of winter mortality in fishes. J Fish Biol 71:315–345

    Article  Google Scholar 

  32. Johnson, CR (2009) Consumer-driven nutrient cycling in arctic Alaskan lakes. Dissertation, Utah State University, Logan

  33. Jonsson B, Skulason S, Snorrason SS, Sandlund OT, Malmqvist HJ, Jonasson PM, Gydemo R, Lindem T (1988) Life history variation of polymorphic Arctic char (Salvelinus alpinus) in Thingvallavatn, Iceland. Can J Fish Aquat Sci 45:1537–1547

    Article  Google Scholar 

  34. Jungwirth M, Winkler H (1984) The temperature dependence of embryonic development of grayling (Thymallus thymallus), Danube salmon (Hucho hucho), Arctic charr (Salvelinus alpinus), and brown trout (Salmo trutta fario). Aquaculture 38:315–327

    Article  Google Scholar 

  35. Keith DA, Resit Akcakaya H, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Arau´jo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    PubMed Central  PubMed  Article  Google Scholar 

  36. Klemetsen A, Elliott JM, Knudsen R, Sørensen P (2002) Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. J Fish Biol 60:933–950

    Article  Google Scholar 

  37. Klemetsen A, Knudsen R, Staldvik FJ, Amundsen P-A (2003) Habitat, diet and food assimilation of Arctic char under the winter ice in two subarctic lakes. J Fish Biol 62:1082–1098

    Article  Google Scholar 

  38. Kling GW, O’Brien WJ, Miller MC, Hershey AE (1992) The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska. Hydrobiologia 240:1–14

    CAS  Article  Google Scholar 

  39. Krebs CJ (1999) Ecological methodology. Addison Wesley Longman, Menlo Park

    Google Scholar 

  40. Kristensen DM, Jørgensen TR, Larsen RK, Forchhammer MC, Christoffersen KS (2006) Inter-annual growth of Arctic charr (Salvelinus alpinus, L.) in relation to climate variation. BMC Ecol 6:10

    PubMed Central  PubMed  Article  Google Scholar 

  41. Larsson S, Berglund I (2005) The effect of temperature on the energetic growth efficiency of Arctic charr (Salvelinus alpinus L.) from four Swedish populations. J Therm Biol 30:29–36

    Article  Google Scholar 

  42. Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118

    Article  Google Scholar 

  43. Levine MA, Whalen SC (2001) Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes. Hydrobiologia 455:189–201

    Article  Google Scholar 

  44. Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Pell AN, Deadman P, Kratz T, Lubcheco J, Ostrom E, Ouyang Z, Provencher W, Redman CL, Schneider SH, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317:1513–1516

    CAS  PubMed  Article  Google Scholar 

  45. Luecke C, Giblin AE, Bettez N, Burkart G, Crump BC, Evans ME, Gettel G, MacIntyre S, O’Brien WJ, Rublee P, GW Kling (2014) The response of lakes near the Arctic-LTER to environmental change. In Hobbie JE, Kling GW (ed) A changing arctic: ecological consequences for tundra, streams, and lakes. University Press, Oxford (in press)

  46. Lyytikäinen T, Jobling M (1998) The effect of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Artic charr. J Fish Biol 52:1186–1198

    Google Scholar 

  47. Lyytikäinen T, Koskela J, Rissanen I (1997) The influence of temperature on growth and proximate body composition of underyearling Arctic charr [Salvelinus alpinus (L.)]. J Appl Ichthy 13:191–194

    Article  Google Scholar 

  48. MacDonald ME, Hershey AE, Mill MC (1996) Global warming impacts on lake trout in arctic lakes. Limnol Ocean 41:1102–1108

    Article  Google Scholar 

  49. MacIntyre S, Fram JP, Bettez ND, O’Brien WJ, Hobbie JE, Kling GW (2009) Climate related variations in mixing dynamics of an Alaskan arctic lake. Limnol Ocean 54:2401–2417

    Article  Google Scholar 

  50. Molnar PK, Derocher AE, Thiemann GW, Lewis MA (2010) Predicting survival, reproduction and abundance of polar bears under climate change. Biol Conserv 143:1612–1622

    Article  Google Scholar 

  51. Morris WF, Doak DF (2002) Quantitative conservation biology: theory and practice of population viability analysis. Sinauer, Sunderland

    Google Scholar 

  52. Murdoch W (1994) Population regulation in theory and practice. Ecology 75:271–287

    Article  Google Scholar 

  53. Nichols JD, Hines JE (2002) Approaches for the direct estimation of λ, and demographic contributions to λ, using capture data. J Appl Stat 29:589–607

    Article  Google Scholar 

  54. Persson L, Leonardsson K, deRoos AM, Gyllenerg M, Christensen B (1998) Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer resource model. Theor Pop Biol 54:270–293

    CAS  Article  Google Scholar 

  55. Power G (1978) Fish population structure in Arctic lakes. J Fish Res Bd Can 35:53–59

    Article  Google Scholar 

  56. Power M, Dempson JB, Reist JD, Schwarz CJ, Power G (2005) Latitudinal variation in fecundity among Arctic charr populations in eastern North America. J Fish Biol 67:255–273

    Article  Google Scholar 

  57. Pradel R (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52:703–709

    Article  Google Scholar 

  58. Reist JD, Wrona FJ, Prowse TD, Power M, Dempson JB, Beamish RJ, King JR, Carmicheal TJ, Swawtsky CD (2006) General effects of climate change on arctic fishes and fish populations. Ambio J Hum Environ 35:370–380

    Article  Google Scholar 

  59. Ries RD, Perry SA (1995) Potential effects of global climate warming on brook trout growth and prey consumption in central Appalachian streams, USA. Clim Res 5:197–206

    Article  Google Scholar 

  60. Rose KA (2000) Why are quantitative relationships between environmental quality and fish populations so elusive? Ecol Appl 10:367–385

    Article  Google Scholar 

  61. Rubin JF (1993) The exceptional growth of the Arctic charr, Salvelinus alpinus (L.) in Lake Geneva. Aquat Sci Res Acr Bound 55:76–86

    Article  Google Scholar 

  62. Sierszen ME, McDonald ME, Jensen DA (2003) Benthos as the basis for arctic lake food webs. Aquat Ecol 37:437–445

    Article  Google Scholar 

  63. Sparholt H (1985) The population, survival, growth, reproduction and food of arctic charr, Salvelinus alpinus (L.) in four unexploited lakes in Greenland. J Fish Biol 26:313–330

    Article  Google Scholar 

  64. Svenning MA, Borgstrøm R (1995) Population structure in landlocked Spitsbergen Arctic charr: sustained by cannibalism? Norw J Freshwater Res 71:424–431

    Google Scholar 

  65. Svenning MA, Klemetsen A, Olsen T (2007) Habitat and food choice of Arctic charr in Linnévatn on Spitsbergen, Svalbard: the first year-round investigation in a High Arctic lake. Ecol Freshwater Fish 16:70–77

    Article  Google Scholar 

  66. Vatland S, Budy P, Thiede GP (2008) A bioenergetics approach to modeling striped bass and threadfin shad predator-prey dynamics in Lake Powell, Utah-Arizona. Trans Am Fish Soc 137:262–277

    Article  Google Scholar 

  67. Wedekind C, Kung C (2010) Shift of spawning season and effects of climate warming on developmental stages of a grayling (Salmonidae). Conserv Biol 24:1418–1423

    PubMed  Article  Google Scholar 

  68. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  69. Wrona F, Prowse T, Reist J, Hobbie J, Lèvesque L, Vincent W (2006) Climate impacts on Arctic freshwater ecosystems and fisheries: background, rationale and approach of the Arctic climate impact assessment (ACIA). Ambio J Hum Environ 35:326–329

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (NSF) grant, DEB Long Term Ecological Research (DEB 1026843) and by the Toolik Field Station, managed by the Institute of Arctic Biology at the University of Alaska Fairbanks with cooperative agreement support from the Division of Arctic Sciences of the Office of Polar Programs at NSF. Additional support was provided by the US Geological Survey, Utah Cooperative Fish and Wildlife Research Unit (in-kind) and The Ecology Center at Utah State University (USU). R. Al-Chokhachy, N. Bouwes, S. Klobucar, and B. Roper all provided assistance in the field, and G. P. Thiede provided extensive logistical support. Brett Roper, Brian Laub, and two anonymous reviewers provided constructive criticism on previous drafts of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This study was performed under the auspices of the USU IACUC protocol number 1539.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Phaedra Budy.

Additional information

Communicated by Marc Mangel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Budy, P., Luecke, C. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach. Oecologia 176, 81–94 (2014). https://doi.org/10.1007/s00442-014-2993-8

Download citation

Keywords

  • Temperature
  • Physiology
  • Bioenergetics
  • Food limitation
  • Fish growth