Skip to main content
Log in

Variability and directionality of temporal changes in δ13C and δ15N of aquatic invertebrate primary consumers

  • Ecosystem ecology - Original research paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Seasonal oscillations in the carbon (δ13C) and nitrogen (δ15N) isotope signatures of aquatic algae can cause seasonal enrichment–depletion cycles in the isotopic composition of planktonic invertebrates (e.g., copepods). Yet, there is growing evidence that seasonal enrichment–depletion cycles also occur in the isotope signatures of larger invertebrate consumers, taxa used to define reference points in isotope-based trophic models (e.g., trophic baselines). To evaluate the general assumption of temporal stability in non-zooplankton aquatic invertebrates, δ13C and δ15N time series data from the literature were analyzed for seasonality and the influence of biotic (feeding group) and abiotic (trophic state, climate regime) factors on isotope temporal patterns. The amplitude of δ13C and δ15N enrichment–depletion cycles was negatively related to body size, although all size-classes of invertebrates displayed a winter-to-summer enrichment in δ13C and depletion in δ15N. Among feeding groups, periphytic grazers were more variable and displayed larger temporal changes in δ13C than detritivores. For nitrogen, temporal variability and magnitude of directional change of δ15N was most strongly related to ecosystem trophic state (eutrophic > mesotrophic, oligotrophic). This study provides evidence of seasonality in the isotopic composition of aquatic invertebrates across very broad geographical and ecological gradients as well as identifying factors that are likely to modulate the strength and variability of seasonality. These results emphasize the need for researchers to recognize the likelihood of temporal changes in non-zooplankton aquatic invertebrate consumers at time scales relevant to seasonal studies and, if present, to account for temporal dynamics in isotope trophic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cabana G, Rasmussen JB (1994) Modeling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257

    Article  CAS  Google Scholar 

  • Cabana G, Rasmussen JB (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci USA 93:10844–10847

    Article  PubMed  CAS  Google Scholar 

  • Carlson RE (1977) Trophic state index for lakes. Limnol Oceanogr 22:361–369

    Article  CAS  Google Scholar 

  • Cattaneo A, Manca M, Rasmussen JB (2004) Peculiarities in the stable isotope composition of organisms from an alpine lake. Aquat Biol 66:440–445

    CAS  Google Scholar 

  • Cherel Y, Hobson KA, Bailleul FR, Groscolas R (2005) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888

    Article  Google Scholar 

  • Finlay JC (2001) Stable carbon isotope ratios of river biota: implications for energy flow in lotic food webs. Ecology 82:1052–1064

    Google Scholar 

  • Finlay JC (2004) Patterns and controls of lotic algal stable carbon isotope ratios. Limnol Oceanogr 49:850–861

    Article  CAS  Google Scholar 

  • Finlay JC, Khandwala S, Power ME (2002) Spatial scales of carbon flow in a river food web. Ecology 83:1845–1859

    Article  Google Scholar 

  • Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190

    Article  CAS  Google Scholar 

  • Grey J, Jones RI, Sleep D (2001) Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnol Oceanogr 46:505–513

    Article  Google Scholar 

  • Gu B (2009) Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia 160:421–431

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Alexander V, Schell DM (1999) Seasonal and interannual variability of plankton carbon isotope ratios in a subarctic lake. Freshw Biol 42:417–426

    Article  Google Scholar 

  • Gu BH, Schelske CL, Waters MN (2011) Patterns and controls of seasonal variability of carbon stable isotopes of particulate organic matter in lakes. Oecologia 165:1083–1094

    Article  PubMed  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, New York

    Google Scholar 

  • Hill WR, Middleton RG (2006) Changes in carbon stable isotope ratios during periphyton development. Limnol Oceanogr 51:2360–2369

    Article  CAS  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress—implications for isotopic analyses of diet. Condor 95:388–394

    Article  Google Scholar 

  • Horrigan SG, Montoya JP, Nevins JL, Mccarthy JJ (1990) Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar Coast Shelf Sci 30:393–410

    Article  CAS  Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40:7501–7511

    Article  PubMed  CAS  Google Scholar 

  • Kankaala P, Taipale S, Li L, Jones RI (2010) Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquat Ecol 44:781–795

    Article  Google Scholar 

  • Lake JL et al (2001) Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Can J Fish Aquat Sci 58:870–878

    Article  CAS  Google Scholar 

  • Leggett MF, Johannsson O, Hesslein R, Dixon DG, Taylor WD, Servos MR (2000) Influence of inorganic nitrogen cycling on the δ15N of Lake Ontario biota. Can J Fish Aquat Sci 57:1489–1496

    Article  Google Scholar 

  • Merritt RW, Cummins KW (2008) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque

    Google Scholar 

  • Mook WG, Bommerso JC, Staverma WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Nordström M, Aarnio K, Bonsdorff E (2009) Temporal variability of a benthic food web: patterns and processes in a low-diversity system. Mar Ecol Prog Ser 378:13–26

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243

    Article  PubMed  CAS  Google Scholar 

  • Perga ME, Gerdeaux D (2005) ‘Are fish what they eat’ all year round? Oecologia 144:598–606

    Article  PubMed  CAS  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179

    Article  Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–527

    Article  PubMed  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Rasmussen JB (2010) Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient-based mixing model for δ13C. J Anim Ecol 79:393–402

    Article  PubMed  Google Scholar 

  • Rasmussen JB, Trudeau V (2007) Influence of velocity and chlorophyll standing stock on periphyton δ13C and δ15N in the Ste. Marguerite River system, Quebec. Can J Fish Aquat Sci 64:1370–1381

    Article  CAS  Google Scholar 

  • Semmens BX, Ward EJ, Moore JW, Darimont CT (2009) Quantifying inter- and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 4:e6187

    Article  PubMed  Google Scholar 

  • Syvaränta J, Hämäläinen H, Jones RI (2006) Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw Biol 51:1090–1102

    Article  Google Scholar 

  • Trudeau V, Rasmussen JB (2003) The effect of water velocity on stable carbon and nitrogen isotope signatures of periphyton. Limnol Oceanogr 48:2194–2199

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (2001) Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066

    Article  CAS  Google Scholar 

  • Vizzini S, Mazzola A (2005) Feeding ecology of the sand smelt Atherina boyeri (Risso 1810) (Osteichthyes, Atherinidae) in the western Mediterranean: evidence for spatial variability based on stable carbon and nitrogen isotopes. Environ Biol Fish 72:259–266

    Article  Google Scholar 

  • Woodland RJ, Rodríguez MA, Magnan P, Glèmet H, Cabana G (2011) Incorporating temporally dynamic baselines in isotopic mixing models. Ecology. doi:10.1890/11-0505.1

  • Zohary T, Erez J, Gophen M, Bermanfrank I, Stiller M (1994) Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol Oceanogr 39:1030–1043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Natural Sciences and Engineering Research Council of Canada (NSERC) and Université du Québec à Trois-Rivières.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Woodland.

Additional information

Communicated by Robert Hall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodland, R.J., Magnan, P., Glémet, H. et al. Variability and directionality of temporal changes in δ13C and δ15N of aquatic invertebrate primary consumers. Oecologia 169, 199–209 (2012). https://doi.org/10.1007/s00442-011-2178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2178-7

Keywords

Navigation